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Abstract 
The artist M.C. Escher was the first artist to create patterns in the hyperbolic plane. He used 
both the Poincaré disk model and the Poincaré half-plane model of hyperbolic geometry. 
We discuss some of the theory of hyperbolic patterns and show Escher-inspired designs in 
both of these models. 
 
 

1. Introduction 
 
The Dutch artist M.C. Escher was known for his geometric art and for re-
peating patterns in particular. Escher created a few designs that could be 
interpreted as patterns in hyperbolic geometry. Figure 1 is rendition of 
Escher’s best known hyperbolic pattern, Circle Limit III. Escher created 
his hyperbolic patterns by hand, 
 

 
 

Fig. 1. A computer rendition of the Circle Limit III pattern. 
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which was a very tedious and time consuming process, since the motifs 
were of different sizes and slightly different shapes. So about 30 years ago 
my students and I were inspired to create such patterns using a computer, 
which could transform the motifs almost instantly. In this paper we show 
some of the hyperbolic patterns we have generated. 

We begin with a brief history of the creation of artistic hyperbolic 
patterns. Then we review the Poincaré models of hyperbolic geometry, and 
repeating patterns. With that background, we next show sample patterns 
from both the disk and half-plane models. Finally, we indicate possible di-
rections of further research. 
 
2. A Brief History of Hyperbolic Art 
 
Euclidean, spherical (or elliptic), and hyperbolic geometry are sometimes 
called the “classical geometries”. The Euclidean plane and the 2-
dimensional sphere are familiar since they can be embedded in the 3-
dimensional space in which we live. However, there is no smooth isomet-
ric embedding of the hyperbolic plane in Euclidean 3-space, as proved by 
David Hilbert more than 100 years ago [6]. Thus we must rely on non-
isometric models of it. This is probably the reason for the late discovery of 
hyperbolic geometry by Bolyai, Lobachevsky, and Gauss almost 200 years 
ago. And it wasn’t until the late 1860’s that Eugenio Beltrami discovered 
what are now called the Poincar´e disk and half-plane models of the hy-
perbolic plane. 

Almost a century later Escher received a copy of a paper from the 
Canadian mathematician H.S.M. Coxeter[1]. The paper contained the hy-
perbolic triangle pattern shown in Figure 2. Escher said that the Figure 2 
pattern gave him “quite a shock” since it showed him how to make a re-
peating pattern with a circular limit (hence the name for his “Circle Limit” 
prints); he was already familiar with patterns with point limits (with dila-
tion symmetries) and “line limits”. Thus inspired, Escher created Circle 
Limit I in 1958, a rendition of which is shown in Figure 3. Over the next 
two years Escher created three more “Circle Limit” prints: 
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         Fig. 2.The {6,4} tessellation                    Fig. 3. A Circle Limit I rendition 
 
Circle Limit II, Circle Limit II (shown in Figure 1 above), and Circle Limit 
IV. For more information, visit the official Escher web site [4]. Twenty 
years later, my students and I were in turn inspired to re-create Escher’s 
four “Circle Limit” patterns using computer technology [2]. However the 
program we wrote was more general than required to reproduce Escher’s 
“Circle Limit” patterns, so we created a number of new hyperbolic pat-
terns. Another reference for the theory of computer generated hyperbolic 
patterns is [3]. 
 
3. Repeating Patterns and the Poincaré Disk and Half Plane 
Models 
 
A model of hyperbolic geometry represents the basic elements of that ge-
ometry (points, lines) by Euclidean constructs. Conversely, as Beltrami 
showed, there are models of Euclidean geometry within hyperbolic geome-
try, so that that two geometries are equally consistent. 

In the Poincaré disk model of hyperbolic geometry the hyperbolic 
points are represented by Euclidean points within a bounding circle. Hy-
perbolic lines are represented by (Euclidean) circular arcs orthogonal to 
the bounding circle (including diameters). The edges of the triangles in 
Figure 2 and the backbone lines of the fish in Figure 3, are hyperbolic 
lines. However the backbone lines of the fish in Figure 1 are not hyper-
bolic lines, but are so called equidistant curves (each point is the same dis-
tance from the hyperbolic line with the same endpoints on the bounding 
circle), which make an angle of about 80◦ with the bounding circle. The 
hyperbolic measure of an angle is the same as its Euclidean measure in the 
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disk model — the model is conformal, so that motifs retain the same ap-
proximate shape as they approach the bounding circle. This was a property 
of the disk model that appealed to Escher. Another desirable property was 
that an entire pattern could be displayed in a finite area, unlike “point 
limit” patterns which could theoretically grow outward to infinity and, 
“line limit” patterns which could also extend to infinity upward and to the 
left and right. However, equal hyperbolic distances correspond to ever-
smaller Euclidean distances toward the edge of the disk, thus all the fish in 
Figure 1 are the same hyperbolic size, as are the triangles in Figure 2. 

In the Poincaré half-plane model of hyperbolic geometry the hy-
perbolic points are represented by Euclidean points (x, y) in the upper half 
plane y > 0. Each hyperbolic line is represented by a (Euclidean) semicir-
cular arc above the x-axis and with center on it (including vertical half-
lines). Figures 4 and 5 show half-plane versions of Figures 2 and 3 respec-
tively. The edges of the triangles in Figure 4 and the backbone lines of the 
 

 
 
Fig. 4. A half-plane version of the              Fig. 5. A half-plane version of Escher’s 
    triangle pattern of Figure 2                                   Circle Limit I pattern 
 
fish in Figure 5 are all hyperbolic lines in this model. This model is also 
conformal, but was not as appealing to Escher as the disk model since it is 
unbounded. Still, Escher used this model to create two and possibly three 
patterns, which he called “line limit” patterns. The hyperbolic distance re-
lationship is simple in this model —hyperbolic length is inversely propor-
tional to the Euclidean distance to the x-axis. 

A repeating pattern is a pattern made up of congruent copies of a 
basic subpattern or motif, where “congruence” is determined by the ge-
ometry in question. In Figure 1, the motif consists of one fish (disregarding 
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color). In Figures 2 and 4, the motif can be either a black or a white trian-
gle (again disregarding color). The motifs of Figures 3 and 4 consist of 
half a white fish together with an adjacent half of a black fish. It seems 
necessary to use repeating patterns to show the hyperbolic nature of the 
models. For instance, if there were just one triangle shown in Figures 2 or 
4, we couldn’t be sure if it was hyperbolic or just a curvilinear Euclidean 
triangle. For more information on hyperbolic geometry and its models, see 
[5]. 
 
4. Patterns in the Poincaré Disk Model 
 
For completeness, we show renditions of Escher’s patterns Circle Limit II 
and Circle Limit IV in Figures 6 and 7. Escher’s last print, Snakes contains 
a pattern of interlocking “hyperbolic” rings near the circular boundary; the 
inner rings form a “point limit” (dilation) pattern. Figure 8 shows a com-
plete pattern of the hyperbolic rings. Figure 9 shows a pattern like Circle 
Limit III , but with five fish meeting a right fin tips. 
 
 
 

 
 
 
       Fig. 6. A Circle Limit II rendition              Fig. 7. A Circle Limit IV rendition  
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     Fig. 8.  A interlocking ring pattern          Fig. 9.  A pattern of fish, five of which 
       inspired by Escher’s Snakes print                             meet at right fins 
 
5. Patterns in the Poincaré Half-plane Model 
 
Escher seems to have created three “line limit” patterns. His Regular Divi-
sion of the Plane VI, Figure 10, and Square Limit are based on the half-
plane model, and Regular Division Drawing 101 may be, but it is hard to 
tell since the lizards are modified in different ways. Figures 11, 12, and 13 
show half-plane versions of Circle Limit IV, the pattern of Figure 9, and a 
fish pattern inspired by Regular Division Drawing 20. 
 

 
 
Fig. 10. A Escher “line limit” pattern        Fig. 11. A half-plane version of Circle                
                                                                                    Limit IV 
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. 
Fig. 12. A half-plane version of Figure 9         Fig. 13. A half-plane fish pattern 
 
7. Future Work 
 
The disk model patterns we have created were designed using a drawing 
program that works in that model. This program has evolved over the years 
to have a number of useful features. However, the half-plane patterns that 
we have created were first designed using the disk model program and 
then transformed to the half-plane model. It would seem to be useful to 
have a program that would allow for the design of half-plane patterns us-
ing that model directly. 

Also, we have just shown a few patterns in each of the models. It 
would be interesting to create many more such patterns. 
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