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Abstract
I provide a brief survey documenting the inclusion of cellular automata, periodic tilings and op-art in mathematical
art. Then I give an overview of the history of Turing-like patterns in mathematical art. I describe a cellular automaton
for producing Turing-like patterns and introduce some new variations. This leads to an open problem concerning the
convergence of such patterns.

Turing and Turing-like patterns trace their origins to a proposal in 1952 by Alan Turing for modeling
stable spatial patterns using systems where two or more chemicals, or morphogens, react while diffusing
through a substrate at differing rates [15]. Turing hoped this would provide a biological explanation for
vertebrate skin patterns, This did not turn out to be the case [11]. However, Turing’s concept continues
to influence activator-inhibitor and reaction-diffusion modeling and has been shown to occur in physical
systems [2].

Young [17] proposed implementing Turing’s activation-inhibition concept using a discrete cellular au-
tomaton. In 1993, in a collaboration with artist Sarah Stengle, I used Young’s cellular automaton model [6]
to generate source material for drawings and 3d-works (see Figure 1) that were subsequently executed by
Stengle [14, pp. 34–35]. McCabe used a simpler cellular automata model based on Turing’s idea wherein
only one substance — representing the “pigmentation” level for each discrete cell in an array is used to pro-
duce Turing-like patterns. McCabe was thus able to generate mathematical artworks with cyclic symmetry
which he called “multi-scale” Turing patterns [10]. Werth generated Turing-like patterns to use as source
material for abstract acrylic paintings by using an iteration technique relying on “unsharp masking” to solve
a system of reaction-diffusion partial differential equations [16]. More recently, I have used Young’s cellular
automaton formulation to explore Turing-like patterns created by letting parameters that were previously
fixed vary from cell to cell; to investigate Turing-like patterns with transparency effects; and to incorporate
alternative distance metrics [7]. Simultaneously, Schwehm reformulated McCabe’s algorithm so that it could
be used to generate what he calls Turing-McCabe patterns at rates up to twenty frames per second so that
they could be incorporated into interactive performance art [12].

It has been understood since antiquity that when periodic boundary conditions are imposed on patterns,
they can be used for tiling the plane as well as creating op-art effects [9]. More to the point, Turing patterns
with periodic boundary conditions [4, 10], patterns that aspire to op-art [5, 8, 13] and patterns involving
cellular automata [1] [3, pp. 38–39] are prominent in mathematical art.

Figure 2 shows a periodic tiling I made using a tile generated by compositing images obtained from a
reaction-diffusion simulation that was based on remote-sensing virtual agents [4]. Figure 3 shows an op-art
piece I made from a cellular morphogenesis simulation [4]. With reference to my recent artwork generated
using variations of Young’s cellular automaton for Turing-like patterns [7], Figure 4 shows a periodic op-art
pattern I created. Figure 5 shows three periodic tiles I created by using different distance metrics. Here, I
continue to explore variations of Young’s cellular automata for art making purposes.



Figure 1 : Left: “Greenfield Drawing”, Sarah Stengle, 1994. Ink on transparent vellum, sheet
size 11′′×14′′, image size 7′′×10′′. Right: “Reaction Diffusion Glass Book”, 1994. Gold leaf on
glass in a painted wooden frame with brass hinges, 10′′ × 10′′ × 8′′. Reaction diffusion modeled
by Gary Greenfield, book by Sarah Stengle.

Figure 2 : Tiling produced from a periodic reaction-diffusion simulation.

Young’s starting point is an activator-inhibitor theory due to Swindale that provides the generalized
diffusion equation,

∂M

∂t
= ∇ ·D · ∇M −KM +Q



Figure 3 : “It’s Not That Simple, II”, Gary Greenfield, 2009.

where M = M(~r, t) is the morphogen (either activator or inhibitor) concentration, and the terms on the right
are diffusion, first-order chemical transformation, and production, respectively. A cell producing both an
activator and inhibitor morphogen at a constant rate, each diffusing according to this this equation, induces
a “morphogenic field” w(R) a distance R from the cell.

Using this model, the cellular automaton Young proposes consists of a two-dimensional array of cells.
Cells are designated to be either differentiated cells (DCs) or undifferentiated cells (UCs). DCs produce
both an activator and an inhibitor which are modeled so as to be updated in accordance with the Swindale
equation. The activator stimulates nearby UCs to become DCs and the inhibitor discourages faraway DCs
from remaining so. More precisely, consider the annulus of cells surrounding a DC with inner radius r1 and
outer radius r2, where 0 < r1 < r2. All cells within distance r1 of the DC receive w1 units of activator,
where w1 > 0, and all cells whose distance is between r1 and r2 of the DC receive w2 units of inhibitor,
where w2 < 0. A cell’s status as a DC or UC is determined by the sum of all the morphogens it receives



Figure 4 : “Turing Gradient Pattern #30423”, Gary Greenfield, 2015.

Figure 5 : “Turing Metric Trio”, Gary Greenfield, 2016.

from all the nearby DCs.
For convenience, normalize w1 to +1.0. Using periodic boundary conditions for cell neighborhoods so

that after every iteration, or update, the pattern will seamlessly tile the plane, each update requires execution
of the following three-pass procedure.

Pass One. Zero out all cells’ w values.

Pass Two. For each DC encountered add the appropriate w1 or w2 value to the w value of each cell in the
annulus defined above.

Pass Three. Assign cells to be DCs or UCs according as their accumulated w value is positive or negative.

Note that if no cells change state during the final pass an equilibrium state for the pattern has been reached
and no further updates are warranted. For initialization purposes, a randomly chosen set of cells (typically
consisting of around 15% of the total) are designated to be DCs.

Figure 6 shows an example of the kinds of effects one can obtain by adding “directionality” to the basic
model by treating the cells that spread morphogens as if they are at the edge of the activation-inhibition
neighborhood rather than at the center. That is, by defining the neighborhood of a DC whose coordinates are
(x0, y0) to be the set of cells whose coordinates (x, y) satisfy x0 ≤ x ≤ x0+L and y0 ≤ y ≤ y0+L, where
L > r2 is constant, during the second pass we only increment the w values of cells that lie in the intersection
of this neighborhood and the annulus surrounding the DC.

Figure 7 gives examples where there are one or more regions with differing activation-inhibition char-
acteristics. That is w2 takes on different values depending on where in the array the DC is located. Figure 8



Figure 6 : Turing patterns under different metrics with directionality added.

Figure 7 : Examples of Turing patterns where there are regions with different activation-inhibition
characteristics.

shows a tiling induced using the middle pattern of Figure 7. These patterns need to be viewed at a distance.
Finally, I consider the “equilibrium problem” for some of the variations of Young’s automata that I

have studied. To the naked eye, a stable pattern always emerges from Young’s model after just a few iter-
ations of the update algorithm. In most situations, after a few hundred iterations, the pattern reaches a true
equilibrium meaning no cell changes state if additional iterations of the update algorithm are performed.
Exactly why this seems to occur is not clear. However, when I was experimenting with activation-inhibition
“half-neighborhoods” of a differentiated cell at location (x0, y0) defined by

{(x, y) : x > x0 and dm((x, y), (x0, y0)) < L}

where dm is the metric and L is the radius of the ball centered at (x0, y0) under dm the situation became
more interesting. Figure 9 shows a pattern under the Euclidean metric that after approximately 500 iterations
becomes stable to the naked eye but then upon further iterations of the update algorithm “slide” across the
underlying toroidal grid in such a way that exactly 50990 cells change state at each iteration. Moreover,
using the same initial seeding pattern but using either the taxicab or supremum metrics it does not appear
that the pattern ever even reaches a stable configuration! Figure 10 shows the supremum pattern starting
from the same initial configuration used for Figure 9 after 500, 1000 and 1500 iterations while Figure 11
shows the taxicab pattern starting from the same initial configuration after 1000, 2000, and 3000 iterations.

A simple combinatorics argument shows that a Turing-like pattern that does not reach equilibrium
must eventually oscillate: If there are N cells in the array, then there are 2N possible DC and UC state
configurations, and since the w values for cells are zeroed during Pass One, by the Pigeon Hole Principle



Figure 8 : Tiling produced from one of our multiple-region patterns.

after 1 + 2N iterations a configuration must have appeared twice signaling that oscillation has begun. It is
an open, and we presume hard if not intractable, problem to determine whether an initial configuration will
reach equilibrium or will oscillate.

To summarize, and in conclusion, I have given a brief, non-exhaustive survey of the presence of cellular
automata, periodic tilings and op-art in mathematical art and I have given an overview of the history of what
are variously called Turing patterns, Turing-like patterns and Turing-McCabe patterns in mathematical art.
Further, I have introduced some new variations of a Turning-like pattern generating cellular automaton due
to Young and identified an open problem concerning the convergence of the patterns for these variations.



Figure 9 : A sliding pattern found using Euclidean “half-neighborhoods” such that exactly 50990
cells change state at each iterations. The pattern is shown after 500, 530 and 560 iterations.

Figure 10 : The slow convergence of the same starting configuration as the previous figure under
the supremum metric after 500, 1000 and 1500 iterations.

Figure 11 : The even slower convergence of the same starting configuration as the previous figure
under the taxicab metric after 1000, 2000 and 3000 iterations.
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