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Figure 1. The Klein bottle as a square with the

opposite sides identified in the sense of the

arrows.

T
he Klein bottle (K in the following) is a

topological object that can be defined as

the closed square [0,2π]×[0,2π]with

the opposite sides identified according

to the equivalence relation

(u,0) ∼ (u,2π),
(0, v) ∼ (2π,2π − v).

It is a well-known fact that K is a genus 2

nonorientable closed surface with Euler charac-

teristic χ = 0, which is topologically equivalent to

a couple of Möbius bands glued together along

the border, and that it is nonembeddable in R3.

It is possible, however, to immerse it in R3, that

is, to map it into R3 obtaining an image with no

singular points. To give an immersion of K in R3,

it suffices to define, on the fundamental square

[0,2π] × [0,2π], an immersion that passes to

the quotient with respect to the relation ∼. Fe-

lix Klein, in his original work in 1882 [18, §23],
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[15, pp. 308–310], described the object as follows:

tucking a rubber hose, making it penetrate itself,
and then smoothly gluing the two ends together,

but he does not give any equation. Today we have

some equations for this topological object which

are fully satisfactory from a technical point of

view and that can be called canonical for their

simplicity and because of the clear and under-

standable shapes they lead to. They are due to

T. Banchoff and B. Lawson and are described in

detail later in this article. However, they do not

resemble the object arising from the geometrical

construction given by Klein, which will be called

the classical shape in the following. It would also

be desirable to have a good parametrization, with

simple formulas and a nice shape, for the bottle in

its classical version. Of course, the newer shapes

are topologically equivalent to the classical one,

but as immersions they belong to different regular

homotopy classes (see the section about regular

homotopy classes of immersed surfaces), so it

makes sense to find a canonical expression for

the classical bottle too, apart from historical and

aesthetic reasons. To elaborate, we say that when

a mathematical subject has a missing tessera, it

is often perceived as a challenge to researchers,

who put their best effort into it and sometimes

go far beyond the original target, opening new

research threads and/or revealing unknown links

between different fields. The well-known story of

the Costa surface and of the associated new fam-

ily of minimal surfaces discovered by D. Hoffman

and W. H. Meeks and the sphere eversion story,

both summarized by R. S. Palais [20], on the one

hand have challenged and inspired a number of

geometers. On the other hand, they have played

a key role in the development of mathematical

visualization techniques and have contributed to

bringing to the public’s attention beautiful and

spectacular aspects of mathematics. Finding good
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mathematical expression for surfaces is also use-

ful if one wants to realize material models of them.

Wire models of the Boy surface and of halfway

steps of a sphere eversion made by F. Apéry and

later by myself [2], [7] could be done because

Apéry had expressed those surfaces as families of

simple curves in space [1]. To say something more

about material models of surfaces, we can claim

that today the greatest potential in the field lies

in 3D printing systems, which help bringing 3D

computer-generated models to the real world and

that are today much more affordable than only a

decade ago (less than US$10,000 for an entry-level

system).

Tactile representation of mathematical objects

is a natural extension of their visualization and,

similarly, is a great source of inspiration for both

young and senior mathematicians and an excellent

way to highlight or communicate properties and

concepts such as curvature, minimality, orientabil-

ity, geodesic curves, singularity, and so on. Some

very interesting work in this field has been done by

pioneers like S. Dickson (see for example [7], [12])

and C. Séquin [22]. If the famous Brill-Schilling

collection of plaster and wire models [13] had to

be stopped in the 1920s because of high produc-

tion costs and lack of interest by mathematicians,

whose attention moved towards formalism and

abstraction rather than visual and intuitive as-

pects, today we see a renewed interest in images

and models. The trend portrayed by Palais [20]

more than a decade ago is now stronger than

ever, nourished also by a great interest in artistic

expression inspired by mathematics. I believe that

the time for the production of an extensive collec-

tion of models of surfaces, improved and updated

if compared to Schilling’s, might have arrived. In

fact, in the specific case of the Klein bottle, I

started looking for a nonsingular immersion in

its classical shape and in a single piece because I

needed a 3D model suitable to be used with a 3D

printing system to be built as a real object. Later I

learned that some conditions were not necessary,

but the work was done by then!

A History of the Klein Bottle Representations

Until the 1970s, geometry and topology textbooks

showed handmade drawings of the Klein bottle,

which strictly followed the original geometric con-

struction given by Klein, i.e., a tube that penetrates

itself [15]. A second version of the Klein bottle,

obtained by moving a lemniscate around a circle

while it rotates, in its plane, half a turn around

its center (see Figure 3), appeared in 1976 in a

paper by T. Banchoff [3] dealing with minimal

submanifolds of the bicylinder boundary. The au-

thor claims that he first discovered the model on

the three-sphere, then projected it in three-space.

The first computer graphics of this version of

the Klein bottle appeared in 1982 in a work by

S. Feiner, D. Salesin, and T. Banchoff as a case

study for an animation language [4]. The paper

provides wireframe and rendered images of the

surface and also shows a sequence of steps of

its geometrical construction which helps in the

understanding of the topological structure. In this

version, often called the figure-eight bottle or the

Banchoff bottle, the self-intersection curve has a

neighborhood made of two Möbius strips, while

in the classical model the neighborhood of the

double curve is a couple of annuli. Another in-

teresting model of the bottle, very beautiful but

maybe less immediately understood with respect

to the previous one, can be obtained by projecting

stereographically to R3 a minimal surface that

lives on the three-sphere S3 and that belongs to

one of the families of the minimal surfaces classi-

fied by H. B. Lawson in [19]. Lawson’s work, dated

1970, does not contain any attempt at visualizing

the surface. Its projection to R3 is a family of

circles in space but also the zero set of a poly-

nomial of degree six. In F. Apéry’s book Models
of the Real Projective Plane [1] one can find both

parametric and algebraic formulas for the sur-

face and—to my knowledge—the first computer

graphics of it. In 1991, S. Dickson [11] provided

equations for the bottle in its classical shape. He

parameterized the surface in two distinct parts,

whose union gives the desired object. This version

was included among the examples in release 2.2

of the software Mathematica [25], a system for

doing mathematics by computer that contains a

powerful visualization tool for geometric objects.

Again in 1991, D. Cox, G. Francis, and R. Idaszak

made a striking video titled The Etruscan Venus
[14], which shows a morphing (homotopy) be-

tween two new versions of the Klein bottle, one as

the connected sum1 of two copies of the Steiner

Roman surface, the other as the connected sum

of two copies of the Boy surface (Figure 2). The

name is due to the fact that the double Roman

surface recalls the shape of a woman’s body. This

morphing was obtained by modifying another re-

markable one, called Romboy, which leads from

the Roman surface to the Boy surface, worked out

by F. Apéry and described and illustrated in [1].

A bottle composed of four pieces was worked out

in 1993 by P. Chang, at that time a student at the

Department of Mathematics at UCLA, and illus-

trated by S. Dickson [10]. The resulting model is

suitable to be designed with CAD2 software, even

1The connected sum of two closed surfaces is obtained by
removing a small disk from each one and by smoothly glu-
ing together the borders of the holes; see also the section
about regular homotopy classes of immersed surfaces.
2Computer Aided Design.
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Figure 2. Top sequence: four steps of the

Romboy morphing (F. Apéry); bottom sequence:

five steps of the Etruscan Venus morphing

(D. Cox, G. Francis, R. Idaszak).

by someone who knows very little mathematics,

as it is the union of a set of sweepings of circular

arcs along other circular arcs. In 1994, D. Cervone,

in answer to a question posed by T. Banchoff [6],

produced an effective representation of the Klein

bottle in its classical shape. After that, J. Beall

added transparency to the object and animated

it. The resulting short movie was presented to D.

Struik on his 100th birthday [16]. The surface is

composed of two pieces, a tube around half of a

lemniscate together with a piece of surface of rev-

olution generated by the second half of the same

lemniscate (more details follow later). A signifi-

cant new step about representations of the Klein

bottle was performed in 1999 by M. Trott [24], who

provided both an algebraic and a parameterized

expression of the surface in its classical shape, in

a single piece, and used it as a test case to explain

a survey of features of Mathematica software.

Regular Homotopy Classes of Immersed

Surfaces

How much different from each other are the Klein

bottles described in the previous section, apart

from their appearance? The notion of regular

homotopy of immersions gives us a rigorous

criterion for telling whether any two immersions

of a surface are essentially the same immersion or

not. This is a quite technical subject, from which

we will get only the key ideas that apply to our

context. For a detailed discussion on the subject

see for example [21]. A homotopy between two

immersions is a continuous deformation which

has as initial stage the first immersion and as

final stage the second immersion; the homotopy

is an equivalence relation; a regular homotopy is

a smooth homotopy that is an immersion at each

stage. An immersed surface can be considered as

an equivalence class of immersions of a surface up

to regular homotopy. It is possible to define a small

setof immersedsurfaceswhichgenerate, bymeans

of the connected sum #, every compact immersed

Figure 3. Three views of a Klein bottle generated

by moving a lemniscate.

surface in R3. In particular, every immersion of

the Klein bottle must be regularly homotopic to a

connected sum of two copies of the Boy surface,

which comes in two different classes, B and its

mirror image B (see [1] for a detailed discussion

about the Boy surface). Taking off a disk from B

or B gives us respectively a right- or a left-handed

Möbius band.

With this said,wecan immediately recognize the

regular homotopy classes of all the immersions of

the Klein bottle described in the previous section:

the classical one belongs to the B#B class, for it can

be seen as the union of two copies of the Möbius

band which are the mirror images of each other,

so they are twisted in opposite senses. Banchoff’s

bottle comes in two different classes,B#B andB#B,

because it is made of two Möbius bands twisted in

the same sense. Lawson’s bottle also contains two

copies of the Möbius band twisted in the same

sense; thus it comes in the same two classes as

Banchoff’s. The Etruscan Venus is nothing more

than a canonical representative of the classes

B#B and B#B, depending on the “chirality” of the

generators chosen. Are the three classes described

so far all the possible ones? No. According to a

result by James and Thomas [17] there must be

four such classes, the number of classes given

by 22−χ where χ is the Euler characteristic of

the surface, which is zero for the Klein bottle.

This implies that a fourth kind of bottle, not

equivalent to the three already mentioned, must

exist. An interesting work concerning this aspect

is being done at the moment by C. H. Séquin [23].

The author investigates how to construct a good

representative for the fourth class and, along the

way, shows several examples of immersions of
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Figure 4. The Klein bottle as a one-parameter

family of circles (H. B. Lawson): the top sequence

shows four coordinate views; the larger images

show that the surface is the union of two

Möbius bands glued along their circular borders,

colored in red, which pass through each other

along the green circle. The red and green circles

lie on the surface but do not belong to the

family that generates the surface itself; both

meet the generating family orthogonally.

the Klein bottle, some of which have never been

depicted before.

Simple Equations for the Klein Bottle

This section recalls the parametrization and the

resulting graphic images of two of the immersions

of K in R3 which we called canonical at the begin-

ning of the article, due respectively to T. Banchoff

and to B. Lawson:

(1)

BanchoffBottle(u, v) :














x = (a+ cos(
u
2 ) sinv − sin(

u
2 ) sin(2v) cosu,

y = (a+ cos(
u
2 ) sinv − sin(

u
2 ) sin(2v) sinu,

z = sin(
u
2 ) sinv + cos(

u
2 ) sin(2v),

(2)

LawsonBottle(u, v) :






















































x = cos2u sinv/

(1− (sinu cosu + sin 2u sinv)/
√

2),

y = (sin 2u sinv − sinu cosv)/
√

2(1− (sinu cosu + sin 2u sinv)/
√

2),

z = cosu cosv/

(1− (sinu cosu + sin 2u sinv)/
√

2).

Figure 5. The same Klein bottle of previous

image, cut in a different way. The part around

the self-intersection circle is made of two

Möbius bands. Cutting them away, the remaining

portion of the surface is orientable, so it is

possible to give its faces two different colors.

Some Classical-Looking Klein Bottles

In this section we recall some formulas and images

of the Klein bottle in its classical shape, already

mentioned in the chronological list. Some of them

give the desired surface as the union of two or more

pieces; some others have complicated expression,

far from the shortness and the elegance of (1)

and (2). The first one was created in 1994 by

D. Cervone in answer to a scenario proposed

by T. Banchoff: take a Bernoulli lemniscate and

use half of it as the directrix for a tube and

the other half as the generatrix for a revolution

surface. Figure 6 shows how the construction is

carried out. The union of the two pieces, which

meet tangentwise, is a very effective and beautiful

model of the bottle and fits perfectly with the

description given by Klein. Its parametrization is

also very simple. Now, before going on with the

other two models of the classical bottle, due to

S. Dickson and M. Trott, respectively, we will recall

the basic technique of generating a tube around

a curve. Let α(t) = (x(t), y(t)), t ∈ [a, b], be a

curve lying on the xy -plane satisfying ‖α′(t)‖ ≠ 0.

Let k = (0,0,1) be the z-axis unit vector and

T = α′

‖α′‖ be the unit tangent vector field of α(t).

Let N = k ∧ T. Then the couple of unit vectors

(N,k) is a moving frame orthogonal to α′(t) and

can be used to construct a tube around α(t) as

follows:

(3)
tube(t, θ) = α(t)+ r(t)

(

cosθ N+ sinθ k
)

,

(t, θ) ∈ [a, b]× [0,2π],
where the scalar continuous function r(t) gives

the radius of the tube. Note that, in this definition,

N is not the standard unit normal to the curveα(t),

which would point to the center of the osculating

circle of α(t), because it would not be defined at

the points where the curvature of α(t) vanishes.

The first model of the Klein bottle as a tube

around a curve (in fact, the union of two distinct
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Figure 6. Construction of the Banchoff-Cervone

bottle. Top sequence: a Bernoulli lemniscate is

cut in two halves, one of which is moved aside

by a distance rrr ; a tube of constant radius rrr is

generated about one of the halves and then a

surface of revolution is generated by making the

second half of the lemniscate turn around the

axis passing by the two ends of the first half.

Bottom: coordinate views and perspective of the

resulting object.

tubes) is due to S. Dickson [11]. It is built up

according to the scheme just described, except

for the choice of the moving pair of vector fields,

which is not orthogonal to the curve. Here is its

parametrization:

(4)
DicksonBottle(u, v)

=



























































x =























6 cosu(1+ sinu)+ 4(1− 1
2 cosu) cosu cosv

for 0 ≤ u ≤ π,
6 cosu(1+ sinu)+ 4(1− 1

2 cosu) cos(v +π)
for π < u ≤ 2π,

y =











16 sinu + 4(1− 1
2 cosu) sinu cosv

for 0 ≤ u ≤ π,
16 sinu for π < u ≤ 2π,

z = 4(1− 1
2 cosu) sinv.

Parametrization (4) defines two distinct tubes,

the first one built up on a frame which moves

along the central curve remaining parallel to the

xz-plane, the second one connecting the two ends

of the first tube through a rotation of π of the

moving frame. The union of these two parts turns

out to be a good-looking object (Figure 7), which

renders properly the idea outlined by Klein.

Note that the central curve used in this construc-

tion

(5) α(t) :

{

x = 6 cos t(1+ sin t),

y = 16 sin t

Figure 7. Klein bottle according to S. Dickson’s

definition; on the left, the central curve. Image

on the right: courtesy of Wolfram Research, Inc.

is a piriform, a well-known curve (see for example

[8] or [9]) whose general parametrization is

(6) Piriform(t) :

{

x = a(1+ sin t),

y = b cos t(1+ sin t).

It can be easily proven, and also guessed by

looking at Figure 7, that (4) defines a singular

immersion, as the two tubes do not meet tan-

gentwise along the common boundaries, and, of

course, it would be better to get the surface as the

image of a single parametrization, with no use of

inequalities, as in (4). This has been achieved by

M. Trott, who defines a parameterized bottle as

a midstep in order to get an algebraic definition

of it via Mathematica. We are interested in his

parametric definition, which closely follows the

scheme defined by (3). Trott puts some constraints

on the directrix and on the radius, which can be

summarized in the following:

(7)

i) α(a) = α(b),
ii) α′(a) = −α′(b),
iii) r(a) = r(b),
iv) r ′(a) = r ′(b) = ±∞.

Conditions i), ii), and iii) mean that the two ends

of the tube must be coincident, while iv) means

that they must meet tangentwise. The curve and

the radius he uses are

(8)

β(t) =
(

1

t4 + 1
,
t2 + t + 1

t4 + 1

)

, t ∈ (−∞,+∞),

r(t) = 84t4 + 56t3 + 21t2 + 21t + 24

672(1+ t4)
and the resulting image is shown in Figure 8.

Equations (8) define an immersion, but the result-

ing shape is somehow edgy because of the choice

of a directrix whose curvature has a nonsmooth

behavior. Moreover, as t ranges on an open inter-

val, when one tries to plot the surface, there is a

missing strip corresponding to a neighborhood of

the cusp (Trott uses t ∈ [−20,+20] in his plots).
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Figure 8. Klein bottle according to M. Trott’s

definition; on the left, the central curve.

A New Description

We propose here a new parametrization of the

bottle in its classical shape. Starting from the

two constructions described in the previous para-

graph, it is natural to try to construct a new surface

by taking the best features from both: the beauti-

ful and symmetric directrix of Dickson’s version

and the rigorous geometric scheme of Trott’s. In

order to use the piriform as a directrix for our

tube, we reparameterize it to make it start and

end at the cusp:

(9) γ(t) =
{

a(1− cos t),

b sin t(1− cos t),
t ∈ (0,2π).

A suitable radius, which satisfies iii) and iv) of (7),

is, for example,

(10) r(t) = c − d(t −π)
√

t(2π − t).
Parameters c and d affect, respectively, the

radius of the whole tube and the difference be-

tween its minimum and maximum value. The

resulting plot, with (a, b, c, d) = (20,8, 11
2
, 2

5
) and

(t, θ) ∈ (0,2π)× [0,2π], is shown in Figure 9.

Some Remarks

Although, in our opinion, the described result

is rather satisfactory, there are some facts to

be pointed out. First, the parametrization of our

surface, extensively written, has a long and com-

plicated expressions. Secondly, similarly to what

happens with Trott’s parametrization, the image

of the immersion fails to be closed because it

misses a circle at the cusp of the directrix, as ‖γ′‖
vanishes at t = 0 and t = π , while the scheme

used needs ‖γ′‖ to be nonzero everywhere. A way

to eliminate this issue is to use one-half of the

Dumbbell curve (see [9]) as a directrix. This is a

famous sextic curve which also has the following

parametrization:

(11)

dumbbell(t) :

{

x = sin t,

y = sin2 t cos t,
t ∈ [0,2π].

If t ranges in I = [0, π], one obtains a curve

that satisfies the first three conditions of (7) and

whose tangent vector is well defined for all t ∈ I,

Figure 9. The piriform curve and a tube around

it: an immersion of the Klein bottle in R3.

Figure 10. Dumbbell curve.

Figure 11. Some views of the Klein bottle as a

tube around Dumbbell curve.

so it is possible to use a closed rectangle as

a domain for the immersion, obtaining a closed

image. By using a stretched Dumbbell curveα(t) =
(5 sin t,2 sin2 t cos t) as the directrix and r(t) =
1
2
− 1

30
(2t−π)

√

2t(2π − 2t) as the radius function,

with t ∈ [0, π], we obtain another example of

(closed) immersion of the Klein bottle (Figure 11).

Conclusion

After collecting some of the most interesting

representations of the Klein bottle as a sur-

face immersed in R3, recalling their equations

and showing their graphics, we define two new
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Figure 12. Photos of 3D printed models of three

versions of the Klein bottle made by a Z-Printer

Z310 Plus (material: plaster). Top left: Klein

bottle according to parametrization (9)–(10); top

right: Klein bottle according to parametrization

(1); bottom left: Klein bottle cut in two parts,

according to parametrization (2); bottom right:

one half of the same surface, cut in such a way

that each of the two halves is a Möbius band

with circular border; some circular arcs lying on

the surface itself are highlighted. (Models and

pictures were created by the author.)

immersions of the bottle in the shape outlined by

Klein in 1882, with a reasonably good appearance.

They are suitable to make computer plots and,

after generating a solid shell around them, to be

used as an input dataset on 3D printing systems.

The mathematical expression of both is still com-

plicated and far from the elegance of versions like

(1) and (2). They are intended to be a midstep

towards an immersion of the Klein bottle in R3

which we would like to call canonical from both a

mathematical and a historical point of view.
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