
Inverting Beauty ∗

R. Caddeo, G. Franzoni, P. Piu

Abstract

In this paper we give a simple application of spherical inversion, the
most elementary among the non elementary geometric transformations,
and of some of its generalizations.
The principal motivation was an attempt to increase the interest for
mathematics in high school students by proposing an easy but mathe-
matically rigorous technique for creating new images, new shapes and,
by means of 3D printing, new nice material objects. Also in order to
put once again in evidence the possibility that mathematics can have
something in common with Nature and the Arts.
Amongst the generalizations of inversion (see [Bl], [H], [Ep], [S1]) , we
find ideally more close to our point of view the hyperbolic inversion due
to G. V. Schiaparelli1, an important Italian astronomer not as much
known as a geometer, who in [S2], in 1898, tried to represent organic
forms and the change from one species to another through geometry
(see, e.g., [Gi-Gu]).

1 Introduction

Nature offers our eyes every day extraordinarily beautiful forms, that look al-
ways the same and always new, but that never fail to amaze us. An example
is represented by flowers: the pleasure we get from them is one of the most
intense. Maybe is this one of the reasons why artists often give in to the
temptation to reproduce them, sometimes emulating, sometimes interpreting
nature, that is, deforming their shape.

∗Work supported by P.R.I.N. 2010/11 - Varietà reali e complesse: geometria, topologia
e analisi armonica - Italy.

1Giovanni Virginio Schiaparelli (1835-1910), astronomer and historian of science, senator
of Kingdom of Italy, Bruce and Royal Astronomical Society gold medalist, discovered groups
of straight lines (canals) on Mars, raising doubts on existence of life on that planet, and
gave an explication of shooting stars as residues of comets. The relationship between his
hyperbolic transformation and standard inversion was observed by Luigi Cremona.
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Figure 1: Bouquet of calla-lilies

Everyone has their own prefer-
ences. Many have predilection for
roses, but some find calla-lilies (or
arum lilies) more fascinating, because
of their slender elegance, which firmly
soars spiraling upward. It’s not hard
to find callas in vases and gardens,
or in paintings. A bouquet of callas,
as that in Fig.1, is an interesting
subject to several painters, who may
have been attracted by their geomet-
ric profile and their nearly evanes-
cence.
Drawings and paintings with callas as

subject can be easily found on the net, taken from museums and from more
or less important art galleries.

Figure 2: (a) Calla-lilies (b) Great Peacock Moth

In Fig.2a and Fig.2b we have reproduced a watercolour painting by Stanis
Dessy, a Sardinian artist (1900-1986), and a Van Gogh’s picture.

It is interesting to know that also in mathematics one can find a calla:
the extremely elegant and beautiful surface which bears her discoverer’s name,
Ulisse Dini, (see [Di]). It can be drawn with Mathematica (see for example
[Ca-Gr]) by using the parametrization given by the map
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(1) X(u, v) =
{

b sin u sin v, b sin u cos v, b
(

cosu+ ln
[

tan
(u

2

)])

+ cv
}

.

For a = 32, b = 5, u ∈ [−3π,−0.5] and v ∈ [0.02, π/2− 0.02], we get

Figure 3: Dini’s Surface

Dini’s surface can be obtained through an isometric deformation from the
Eugenio Beltrami’s Pseudosphere 2

Figure 4: Pseudosphere

parametrized by

X(u, v) =
{

sin u sin v, sinu cos v, cosu+ ln
[

tan
(u

2

)]}

.

Therefore these two surfaces, even though it does not appear evident at
first glance, share the property of being curved in the same way in every point.
More precisely, they have Gauss curvature K constant and equal to −1.

2Section 2 of Livia Giacardi’s interesting paper [Gi] of 2013 ESMA proceedings is devoted
to the Beltrami’s cardboard model of this pseudo spherical surface.
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One may wonder whether it is possible to create by means of mathematical
tools a composition resembling any of those in Fig.1 and in Fig.2. In order to
draw a bouquet from the Dini’s surface, it is necessary to find a way of bending
it in a proper way, to obtain a visually pleasing composition.
It is important to observe that this can be done through a spherical inversion.
This is a non elementary (i.e. non linear) geometric transformation, in fact one
of the simplest, besides rigid motions (the congruences) of Euclidean geometry.
In the following sections we will briefly recall the notion of inversion, some of
its well known properties and some generalizations, not as much well known.
But first of all we show what our bunch of ”flowers” looks like:

Figure 5: A Dini bouquet

This composition has been realized by putting together one Dini’s surface and
four of its inverses, obtained by inverting Dini’s surface with respect to the
two spheres of radius 150 and centered in the points (−0.63, 150,−162), and
(−0.63,−150,−162), and to the two spheres of radius 280 with centers in
(−0.63, 280,−162) and (−0.63,−280,−162).

2 Inversion in Circles

There are several kinds of inversion (see [H]); among them, the inversion with
respect to a circle is the simplest one. In Sect.6 we shall mention some other
inversions; let us begin with the circular inversion.

From the definition it is easy to determine the mutual position of P and
P ′ with respect to γ:
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Let γ be a circle of radius r and center
C. By definition, for any point P 6= C in
the plane of γ, the inverse P ′ of P with
respect to γ is the unique point P ′ on the
half-line containing C and P such that

(2) CP · CP ′ = r2.

The number r2 is the power of inversion.

P

γ

P ′

C

1. P = P ′ if and only if P lies on the circle γ.

2. If P is inside γ, then P ′ is outside γ, and P ′ is inside γ if P is outside.

3. (P ′)′ = P (that is, the inverse of the inverse of P is P ).

Moreover, there are very simple geometric constructions to find the inverse
P ′ of P 6= C. Besides the trivial case, when P belongs to γ, we have two cases.

1. The point P is inside γ. Let TQ be the chord of γ through P per-

pendicular to
−→
CP . Then the inverse P ′ of P is the point of intersection

of the tangents to γ at T and Q.

2. The point P is outside γ. Let R be the midpoint of the segment CP ,
and σ the circle with center R and radius CR = PR. Then σ intersects
γ in T and Q, PT and PQ are tangent to γ, and the inverse P ′ of P is
the intersection of TQ and CP .

P ′

T

Q

PC

PR

T

Q

P ′

C

Once we have learnt how to find the inverse of a given point, it is interesting
to see how are the inverses of sets of points. If the figure to invert is a circle,
the result, simple and surprising, is a Steiner’s theorem that in [Pa], p.178, is
called the fundamental theorem of inversion:

Theorem 2.1. The inverse of a circle is a circle.
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More precisely one has the following two cases.

1. Let γ be a circle of radius r and center C, δ a circle of radius s and center
Q. Assume C outside δ and let k be the power of C with respect to δ.
Let f the dilation with center C and ratio λ = r2/k. Then the image δ′

of δ under inversion in γ is the circle of radius λ · s whose center is the
image f(Q) of Q.

2. Let δ be a circle passing through the center C of a circle γ. The image
of δ minus C under inversion in γ is a line ℓ not through of the center
C; the line ℓ is parallel to the tangent to δ at C.

C

γ

Q

δ

f(δ)

δ′
P

R
P ′

C

P

A′ A

P ′

γ

δ

It is also well worth considering inversions of other conic sections. We must
here remark that, to represent with the program Mathematica the inverse of a
parametrized curve, it is convenient to translate condition (2) in the formulas
relating the coordinates of a point P and those of its inverse. These formulas
are obtained by observing that, when the point P describes the curve α, the
inverse curve α′, is drawn by the point P ′ given by

(3) P ′ = C +
r2(P − C)

||P − C||2
.

Here we have denoted by ||P − C|| the length of the segment CP .

Let us show (in red) some inverse curves of conics. Inversion of a parabola
with respect to circles centered at its vertex and its focus gives, respectively,
a cissoid of Diocles and a cardioid:
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Figure 6: A parabola with its inverse with respect to circles centered in its
vertex (left) and in its focus (right).

For an ellipse, taking the circle of inversion centered in a vertex, in the
center and in a focus of the ellipse, we obtain respectively a witch of Agnesi, a
lemniscate of Booth and a limaçon of Pascal.

Figure 7: An ellipse with its inverses with respect to circles centered in one of
its vertices (left), in the center (middle) and in one of its foci (right)

When the conic we want to invert is a hyperbola and the circles of inversion
are chosen as for the above ellipse, we get a strophoid, a lemniscate of Bernoulli
and a limaçon of Pascal, respectively.

7



Figure 8: A hyperbola with its inverses with respect to circles centered in one
of its vertices (left), in its center (middle) and in one of its foci (right)

But it is also interesting to see in what way the inversion deforms triangles
and squares.

Figure 9: Inverses of a triangle contained in (left) and containing (right) the
circle of inversion.
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Figure 10: Inverses of a square with respect to a circle inside the square, and
to a circle outside the square.

3 Inversions in three dimensions

Let us now consider the inversion with respect to a sphere, to explain the way
Fig.5 was obtained.
Conditions (2) and (3) do not change when we want to invert a point P 6= O
in ordinary space with respect to a sphere centered in O and of radius r. But
now, besides the curves, we can invert planes, spheres, quadrics and more
complicated surfaces, as it can be seen in [Ca-Gr].
For example, in Fig.11 are represented the Möbius strip

X(u, v) =
{

cosu+ v cos
u

2
cosu, sinu+ v cos

u

2
sin u, v sin

u

2

}

and its inverse with respect to the sphere of radius 2 centered in the origin:

Figure 11: A Möbius strip with its inverse.

In Fig.12 we can see a torus and, on the right, one of the famous Dupin
cyclides, which held also J. C. Maxwell’s interest (see [Mx1]). This cyclide can

9



be obtained by inverting the torus

X(u, v) = {cos u(8 + 3 cos v), sinu(8 + 3 cos v), 3 sin v}

with respect to the sphere centered in the point C = (0, 2, 0) and of radius 2.

Figure 12: A torus with its inverse.

Now we draw in Fig.13 two of the surfaces we need to compose the image
in Fig.5.
The inverses of the Dini’s surface given by parametrization (1) with respect to
the sphere centered in (−0.63, 150,−162) and of radius 150 and with respect
to the sphere centered in (−0.63, 280,−162) and of radius 280 are

Figure 13
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And finally we are able to obtain the bouquet in Fig.5. We just put to-
gether the surfaces in Figures 3 and 13 and the two other inverses that we
get by inverting the Dini’s surface with respect to the sphere centered in
(−0.63,−150,−162) of radius 150, and to the sphere centered in (−0.63,−280,−162)
of radius 280.

4 Digression. 3D Printing of the Dini bouquet

Probably the reader knows what 3D printing is. During the last 4 - 5 years
it sticked out from technical reviews and specialist environment to come to
mass reviews and TV. In a certain sense, 3D printing “brings to real life” solid
objects who live in the virtual worlds created by computers. Thanks to it
we can realize and keep in our hand a very precise copy of the Dini surface
bouquet. Those who do not know enough about 3D printing techniques will
find some details further on this paragraph. The picture below shows a virtual
model of the bouquet (on the left) and a photography of the corresponding
physical model of it.

Let us spend some words more about this technique. First of all, any ap-
plication of these or other surfaces in physical world bases on the realization of
material models of such objects. By means of scientific, design or engineering
software it is possible to get 3D models, i.e. models that exist in a virtual
three dimensional space in the memory of a computer and of which we can
see in perspective some projections and animations giving us the impression
of being watching real objects.

Techniques of rapid prototyping and 3D printing, born in the end of the
eighities of last century, allow to carry out the next step, that is to take mathe-
matic surfaces to the concrete, real world in the form of tangible objects, which
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we can hold in our hands, rotate, and observe from different angles, to get a
precise idea of their geometrical and topological properties. The mentioned
terms indicate a series of techniques widely used to build conceptual and func-
tional prototypes in several industrial fields, like automotive, electric household
appliances, toys, jewels and medical fields, with not negligible applications in
artistic, cultural and archeological areas. The main innovation introduced by
these techniques (in the following we will use just the 3D printing term, which
generally indicates medium to low cost systems that do not require a specific
technical competence to users, while the rapid prototyping term is associated
to the industrial/professional systems; the bases of the operating principles
are the same) is that they make realizable every kind of shape, no matter how
complicated they are, with the sole condition that they represent real solid ob-
jects, i.e. not impossible figures. Shapes can be complex, can have back drafts,
undercuts, inner canals of cavities, features that make them impossible to be
realized by means of more traditional techniques such as lathe or CNC cutter
(for example: a car’s engine block, including the duct for the liquid coolant, or
the accurate reproduction of an human skull). This is made possible thanks
to the working method of 3D printers. They decompose the 3D model to be
realized – usually a closed triangle mesh – into a collection of plane parallel
sections. Then they execute the realization of every layer, in thickness vari-
able between 0.05 and 0.5 mm depending on technology, until they produce
a concrete part that corresponds to the virtual object. Materials used vary
depending on technology: photopolymers, ABS resin, nylon, plaster, ceramic,
metal.

So, what do we have to do if we have the equations of a surface and we
want a physical model of it? Unfortunately, the operation is not straightfor-
ward. In fact, the input needed for an RP system is a watertight polyhedral
mesh which represents a real object. In the main applications of 3D print-
ing (design of new products in industrial field) the solid model is produced
by solid modeling software, specifically conceived to give outputs ready to use
with 3D printers, or by reverse engineering techniques. There is a survey of
scientific software which allow the representation and visualization of surfaces
starting from their parametrization (equation), like Mathematica, Maple, Mat-
Lab, MathCad, but such representations are not usable on a 3D printer. It
is necessary to shift from the bidimensional exhibits needed in visual/graphic
environments to volume-including shells suitable to 3D printing environment.
This idea can be transferred into a series of mathematical operational steps,
whereof starting with a surface parametrization we end up having a closed mesh
directly usable by a 3D printer, which effectively represents our surface. It is
relatively simple to obtain a printable solid model for regular surfaces without
multiple loci by using the basic tools of differential geometry: it suffices to
define some parallel and normal surfaces to the given one to construct a solid
shell around it. Otherwise, in presence of self-intersections and/or singulari-
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ties (and these are often the most interesting cases) we need to solve nontrivial
problems which involve more differential geometry and computational geom-
etry and which request skills transversal to both the mentioned scientific fields.

Figure 14: Photos of 3D prints of models of surfaces; From left: part of the
Klein bottle in Lawson’s version; Moebius band with circular boundary; Boy
surface according to F. Apéry’s parametrization (see [Ap]).

We finish this short journey into the world of 3D printing saying that in
the last decade 3D printers performances have been constantly increasing while
their price has decreased. In a close future, that probably has already begun,
it will be normal to have a 3D printer connected to our PC just like today
everyone has a inkjet or laser printer. Today (2013) it is already possible to
buy a small 3D printer kit, with basic performances, at a price as low as 600
dollars.

5 Notes on circular inversion

Historically, the interest for transformations of the entire plane and for the
properties that are invariant with respect to them, to solve geometrical prob-
lems, comes from the development of projective geometry of the XIX century,
mainly due to Gaspard Monge (1746-1818) and to Jean-Victor Poncelet (1788-
1867).
As regards the inversion, to our knowledge the most authoritative references
are, in chronological order, the F. Bützberger pamphlet [Bü], reviewed by
Arnold Emch in the Bulletin of the American Mathematical Society, vol. 20
(1914), pp. 412 - 415, and the very interesting Boyd C. Patterson’s paper [Pa]
on the origins of the geometric principle of inversion. Another useful reference
for circular inversion and its generalizations, including those mentioned in the
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last two sections of this paper, is [Ca].
Let us follow the more important stages of this route from the beginning, in
chronological order.
The first paper containing in nuce the idea of inversion appears in 1600, when
François Viète gives a solution of the tenth Apollonius problem 3. On pages
from 5 to 9 of [Vi], Viète presents a solution by using the center of similitude
of two circles.
After more than two centuries, the belgian mathematicians (and good friends)
Germinal Pierre Dandelin [Da] and Adolphe Quételet [Qu], also known for the
so-called Belgian Theorems (see, e.g., [Hu]), arrive, independently one from the
other, to the principle of inversion when studying the properties of the focale
of conic sections (see, e.g., [Pa], p. 156) by means of stereographic projection.
In particular, Quételet deduces the relation rr′ = R2 between radii vectores
that are reciprocal with respect to a circle of radius R, and also the explicit
analytic formulas of the circular inversion.
But the first who gives the precise definition of inversion and establishes and
applies inversion is Jakob Steiner, during his researches on the geometry of the
circle and the sphere through the theory of similar figures (see [Bü]). Later,
in 1847, Joseph Liouville will give to the inversion the name of transformation
par rayons vecteurs réciproques. Again from [Bü] it comes out that Steiner was
interested in this study in the attempt to solve the following problem: given
in a plane three circles, to find the locus of a point whose polars with respect
to three circles pass through a point.
In 1831, Julius Plücker (see [Pl]) finds inversion within the theory of poles
and polars (in the next section we shall recall the construction of poles and
polars of a conic), while in 1832 Ludwig Immanuel Magnus, in [Ma], discovers
inversion as a particular case of a bijective map between two planes.
In 1836, Giusto Bellavitis, informed, even if partially, about the results ob-
tained by Dandelin and Quételet, realizes that inversion is a very useful in-
strument that, combined with other geometric tools, could lead to new theo-
rems. His memoir [Bl] contains an elementary and very complete exposition
of various geometric transformations such as those of similarity, projection,
inversion, reciprocal polars, homology.
In 1842 there are two more simultaneous and independent discoveries of a
new principle that is nothing but the inversion. The mathematicians involved
are John William Stubbs and John Kells Ingram, both at Trinity College in
Dublin; three of their papers on the subject even appear in the same volume
of the Transactions of the Dublin Philosophical Society (see [St1], [St2], [In1]
and [In1].
In 1845, William Thomson (Lord Kelvin) communicates to Liouville his ”prin-
ciple of reciprocal points”, a method he found useful to solve a certain problem

3PROBLEMA X: Datis tribus circulis, describere quartum circulum quem illi contingant.
(To draw a circle that touches three given circles in a plane.)
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in electricity. Louville develops the analytic theory of the Thomson’s transfor-
mation that in this occasion he calls transformation by reciprocal radii.
The last we have to mention is August Ferdinand Möbius, that in 1855 under-
takes in [Mö] a systematic study of inversion.

6 Generalizations

A quite reasonable question is whether there exist other similar, simple, geo-
metric, useful constructions, that can also give rise to new shapes. In 1838,
Giusto Bellavitis of Padua proposed in [Bl] a very natural generalization of the
circular inversion by taking any conic instead of a fixed circle, and allowing
the center of the inversion to be placed anywhere, and not only in a special
position as, for example, in a center of symmetry.
Such a generalization can be obtained by considering that, as for the circle,
for any conic there is a canonic, geometric way to find the point P ′ inverse
of a point P . This happens thanks to the fact that a conic determines in its
plane a correspondence between points P , the poles, and straight lines p, their
polars.
For example, given an ellipse σ, if P is a point outside σ, its polar p is the
straight line through the points Q and T where the two tangents to σ from P
touch the conic.
When P is a point of σ, there is only one tangent to σ at P , and therefore this
tangent coincides with the polar p of P .
If P is inside σ, any two straight lines r1, r2, r1 6= r2, passing through P ,
intersect σ in four points A1, B1, A2, B2. Let Q and T be the intersections
of the lines a1, b1 and a2, b2, respectively tangent to σ at the points A1, B1

and A2, B2. Then the polar p of P is the straight line through Q and T . The
following figures illustrate the first and the third case.
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Q

p

T

P

Q Tp

Figure 15: Polars (red) of a point P outside or inside an ellipse.

Therefore, according to Ludwig Immanuel Magnus and Julius Plücker (see
[Ma] and [Pl]), we can define the inversion with respect to a conic σ in the
following way.

Definition 6.1. Let A be a point fixed as origin in the plane of σ. Then the
inverse P ′ of a point P of this plane is the intersection between the polar of P
with respect to σ and the straight line through P and the origin A.

In Fig.16 are represented an ellipse and the construction of P ′ when the
point P is outside (left) and inside (right) an ellipse:
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Figure 16

If P belongs to σ, its polar line is the tangent to σ at P and the straight
line through P and A intersects this tangent at P . Thus P = P ′.
Except for the origin A and the two points (real or imaginary) where the tan-
gents from A to σ touch σ (these are the three principal points), every point
P has only one inverse P ′.

It is not difficult to foresee that the study of the inversions with respect to
the different conics and to various origins can be even rather complicated. This
work has been achieved in 1865 by T. A. Hirst in the paper On the quadric
inversion of plane curves [H]4 , where one can find an ample and detailed essay
on the subject. Here we shall only mention and illustrate by drawings the more
interesting and useful of the special cases corresponding to particular choices
of the conic and of the origin. In the following, the fundamental conic is the
conic with respect to which we invert points.

(I) The fundamental conic is a hyperbola with its centre at the

origin A.

4An italian version of this paper, published in Annali di Matematica Pura e Applicata,
Serie 1, Dicembre 1865, vol. 7,1, pp. 49-65, with title Sulla Inversione quadrica delle curve
piane, is due to Luigi Cremona. Here is how the paper is introduced: We consider a good
and useful thing to bring this important and very elegant work of our friend, Mr. Hirst, to
the knowledge of the readers of the Annali. (Stimiamo cosa buona e utile il far conoscere
ai lettori degli Annali questo importante ed elegantissimo lavoro del nostro amico, il Sig.
Hirst.) (Luigi Cremona)
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The inverse of every straight line parallel to one of its asymptotes is a
straight line parallel to the other asymptote, and the two straight lines
intersect on the fundamental hyperbola.

The inverse of every other straight line is a hyperbola passing through
the origin, and having its asymptotes parallel to those of the fundamental
hyperbola.

The inverse of any hyperbola which does not pass through the origin,
but has its asymptotes parallel to those of the fundamental conic, is an
hyperbola possessing the same properties; and if the hyperbola we want
to invert has centre at the origin, its inverse will have centre in the origin
as well.
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(Ia) The conic is an equilateral hyperbola.

Choosing again the origin at the centre of the hyperbola, the method of
inversion becomes identical with the hyperbolic transformation investi-
gated by Giovanni Virginio Schiaparelli, in his interesting memoir Sulla
trasformazione geometrica delle figure (see [S1]).

(II) The fundamental conic is an ellipse and the origin is at its cen-

tre.

The inverse of every straight line in the plane will be an ellipse passing
through the origin, and at the same time similar, as well as similarly
placed to the fundamental ellipse (that is, in the two ellipses, the axes of
symmetry corresponding in the similarity are parallel).

B

C

O

R

B

C

O
B

C

O
P

Q

R

Figure 17: Inversion of three parallel straight lines

Every ellipse not passing through the origin, but similar and similarly
placed to the fundamental one, has for its inverse an ellipse with the
same properties; and should the primitive be likewise concentric with
the fundamental ellipse, so also will be the inverse:

Figure 18
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7 Schiaparelli’s hyperbolic inversion of some

surfaces

In this section, we illustrate by some examples how the Schiaparelli hyperbolic
inversion transforms figures and bends surfaces. Other examples can be found
in [Pe]
To obtain a generalization of the spherical inversion, Schiaparelli substitutes
the sphere with a quadric (see [S1]). Here we only consider the particular case
when the quadric is a precise hyperboloid of two sheets.

• The circular cylinder of parametrical equations






x(u, v) = a cosu
y(u, v) = a sin u
z(u, v) = v

with respect to the hyperboloid of two sheets of equation xy+xz+yz = 1
has as inverse

Figure 19: Hyperbolic inverse of a cylinder.

• The inverse of the pseudosphere of parametric equations






x(u, v) = a cosu sin v
y(u, v) = a cosu cos v
z(u, v) = a cos v + a ln(tan(v

2
))

with respect to the same hyperboloid is

• Next we consider the Dini’s surface of parametrical equations






x(u, v) = a cosu sin v
y(u, v) = a cosu cos v
z(u, v) = a cos v + a ln(tan(v

2
)) + bu

Its inverse with respect to the same hyperboloid of two sheets is
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Figure 20: Hyperbolic inverse of a pseudosphere.

Figure 21: Hyperbolic inverse of a Dini’s surface.

• Finally we apply the same inversion to the tori of parametric equations

X1(u, v) = {cosu(8 + 3 cos v)− 12, sinu(8 + 3 cos v)− 12, 3 sin v + 20}

and

X2(u, v) = {cos u(8 + 3 cos v)− 20, sin u(8 + 3 cos v)− 20, 3 sin v − 20} .

From the left to the right, the corresponding inverse surfaces are
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Remark A modern analitic treatment of inversion with respect to a gen-
eral quadric of a n-dimensional vector space, endowed with a non-degenerated
symmetric bilinear form, can be found in the 1983 D.B.A. Epstein’s lecture
notes [Ep].
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[Bü] Bützberger F., Über bizentrische Polygone, Steinersche Kreis- und
Kugel-reinhen und Erfindung der Inversion, Teubner, Leipzig, 1913.

[Ca-Gr] Caddeo R., Gray A., Lezioni di geometria differenziale su curve e
superfici, volumes 1 and 2, CUEC, Cagliari, 2000 and 2001.

[Ca] Cassina U., Su alcune trasformazioni quadratiche, Enciclopedia delle
Matematiche Elementari, vol. II, Parte I, Hoepli, 1936, 464-476.
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