
Polyhedral eversions of the sphere; first
handmade models and JavaView applets.

Richard Denner

Abstract This article gives the tools for self-construction of the polyhedral models
which appear during the process of everting the polyhedral sphere. It can be under-
stood as a pedagogical device to understand the different steps of that process.

1 Introduction

There are problems which are real challenges. The sphere eversion problem belongs
to that category! How is it possible to exchange the internaland the external face of
a sphere without tearing or folding its surface? At first sight, it seems impossible!
But, by authorizing the surface to cross itself and by respecting rules established by
mathematicians, it becomes possible and the eversion1 can be shown on the screen
of a computer. At the conference, I presented pictures of polyhedra imagined by
the blind mathematician Bernard Morin which illustrate thesphere eversion. The
approach which is developed here allowed the discovery of the firsteversion of the
cuboctahedron. We present three introductory models which lead directly to the
central stage of the eversion.

The starting point of this collection of models is a minimal Boy surface with 9
vertices inspired by Ulrich Brehm’s work([2]). It is a non-orientable surface which
presents a threefold axis of symmetry. Some of its faces intersect themselves giving
birth to an intersection line and atriple point. The same construction process can be
applied to get a model with a fourfold symmetry calledopen halfway-model. Then
the surface becomes orientable and has aquadruple point. The reader is invited to
build by himself these two first models. The third model, called closed halfway-
model, reaches the necessary level of complexity to carry out the eversion of the
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cuboctahedron. Handmade models, photos in artificial lightand JavaView2 applets
were used to highlight the thought of the blind mathematician.
For the exchanges with Morin, we used a closed halfway-modelin white drawing
paper, less aesthetic than the one presented here. Impossible to see inside! The con-
struction had to be improved with transparent faces in rhodoïd and with the use
of two different colours (red and blue) for each side of the opaque faces. Many
years later, the models were realized on computer with Konrad Polthier’s software
JavaView; all the details of the eversion can be shown. The two sides of a face can
be displayed with two different colours as on the handmade models. Furthermore,
JavaView is able to handle the intersections; the triple point and the quadruple point
are immediately visualized as intersections of three or four faces.

2 Minimal polyhedral Boy surface

At the beginning of the 1980’s, during summer holidays readings I fell casually
on blind mathematician Bernard Morin’s article “Le retournement de la sphère”
([1]) illustrated by Jean-Pierre Petits drawings in the revue Science. It aroused my
curiosity and I tried to understand step-by-step the sphereeversion3 that Morin had
imagined. A few years later (1986), I met him at the University Louis Pasteur of
Strasbourg. At the end of the formation he invited me, with other colleagues, in his
office to show us a great wire model of the Boy surface ([3], [4]). I immediately
recognized – and was fascinated by – the surface I discovereda few years earlier in
his article. After our discussion, he gave me a letter written by Ulrich Brehm which
contained a short description of a Boy surface with nine vertices. It was a variant of
the minimal Boy surface conceived by Brehm ([2]) which Morinhas adapted to the
polyhedral sphere eversion. I tried to build it briefly and succeeded after a few days.

2.1 Construction of a polyhedral Boy surface

Boy surfaces4 are obtained by gluing together a Möbius band5 and a disk along
their boundaries. The first model we will describe is Ulrich Brehm’s polyhedron6.
Its Möbius band is a three half-turns twisted band; it is a remarkable assembly of
three concave pentagons which is explained below.

The first pentagonP0 = C0A0B0A1B1 respects the following conditions : 1) the
triangleA0B1C0 is equilateral 2) the pointB0 is its orthocenter 3) the vertexA1 is so

2 http://www.javaview.de/
3 http://www.lutecium.org/jp-petit/science/mathsf /Retournementsphere/PLS79.pd f
4 http://arpam.free.fr/The%20Boy%20Surface%20as%20Architecture%20and%20Sculpture.pdf
5 http://www.mathcurve.com/surfaces/mobius/mobius.shtml
6 http://www.mathcurve.com/polyedres/brehm/brehm.shtml
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that the quadrangleC0B0A1B1 is a parallelogram.

Similarly, we construct two other pentagonsP1=C1A1B1A2B2 andP2=C2A2B2A0B0.
These 3 pentagons lean towards the faces of a regular tetrahedronPA0A1A2.
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Fig. 1 The pentagonal faceP0 and its triangulation. Note that the three triangles in red are isosceles
and have an angle which measure is 120˚. Simple and nice! During the deformation the pentagons
can be folded along the sides of the triangles. This picture is realized with LaTeX and the packages
pstricks and pst-3dplot.

The coordinates of the nine vertices are:
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If we consider the assemblyP0∪P1∪P2 we get a polyhedral Möbius band. We just
have to add 7 triangles which assembly is homeomorphic to a disk (see Fig.2-b):

• three dorsal triangular facesQ0 =C0B1A2, Q1 =C1B2A0 andQ2 =C2B0A1; their
intersection is the triple point,

• three ventral triangular facesR0 =C0A2A0, R1 =C1A0A1 andR2 =C2A1A2,
• and to finish the equilateral triangleA0A1A2.
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Fig. 2 Construction of the Boy surface by gluing together a Möbius strip and a disk.

Fig. 3 Assembly of the Boy surface; scale = 0.4. Notation:α0 = P0∩Q2∩Q1, β0 = P0∩Q0∩Q1.
Begin to bring togetherQ2 andQ1, along their intersection line[α0β1]; then insertQ0 into the
previous assembly. The trick is easy and you will succeed quickly.Now add the three pentagons
by pushing them through their corresponding slots[α0β0], [α1β1] and[α2β2] on the dorsal faces:
the Möbius strip takes its place. Then, to finish add the ventralfacesR0, R1 andR2; and if you
want to close the model add a last equilateral triangleA0A1A2 – which has the same size as the
trianglePA0A1 – as bottom face. Enjoy! Animportant fact to notice here is that theflexibility of
the material (paper or rhodoïd) is very useful for the assembly.
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A nice description of the construction of the Boy surface andmore topological
reminders are available in Laura Gay’s internship report7 at the Institute Camille
Jordan in Lyon. See also ([6]) for Boy surfaces having a higher level of symmetry.

Fig. 4 Minimal Boy surface with 9 vertices: handmade model and JavaView applet.

3 Open halfway-model

With 4 concave pentagons in vertical position we get a model with 12 vertices:

A0(3;−3;0)
B0(3;−3;6)
C0(3;−15;8))

A1(3;3;0)
B1(3;3;6)
C1(15;3;8)

A2(−3;3;0)
B2(−3;3;6)
C2(−3;15;8)

A3(−3;−3;0)
B3(−3;−3;6)
C3(−15;−3;8)

Its 12 faces arePi = CiAiBiAi+1Bi+1, Qi = CiBi+1Ai+2 and Ri = CiAi+2Ai where
i ∈ Z/4Z.

Fig. 5 Open halfway-model: the quadruple point is reachable by passing under the pentagons.

7 http://math.univ-lyon1.fr/ borrelli/Jeunes/rapport_de_stage_Laura_Gay.pdf

http://math.univ-lyon1.fr/~borrelli/Jeunes/rapport_de_stage_Laura_Gay.pdf
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3.1 Intersection line

Fig. 6 For the construction of the model – and the JavaView applet – all the coordinates of the
points which determine the self-intersection line had to be calculated by solving several linear
systems. Here we have annotatedα0 = P0 ∩Q3 ∩Q1, β0 = P0 ∩Q0 ∩Q1, γ0 = Q0 ∩R0 ∩Q1 and
δ0 = Q0∩Q1∩R1. They all belong to the planeQ1 like the quadruple pointQ (in green).

3.2 Construction of an open halfway-model

Fig. 7 The pentagonal faceP0 and the ventral faceR0; scale= 0.5. They can be used as template
for the other facesPi andRi , i = 1, ...,3. The geometrical figures are reproduced with GeoGebra.
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Fig. 8 The four dorsal facesQ0, Q1, Q2 andQ3; scale= 0.5. They have in common the quadruple
pointQ. It was crucial to find how to do this assembly.
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3.3 Tips for the mounting of the model

Don’t use simple paper, it will not work easily. Use at least drawing paper which
has a better rigidity.

1. TakeQ2 in your left hand.
2. TakeQ1 in your right hand, then pushQ1 into the slot[γ1β1] of Q2 until the points

γ1 andβ1 of the two faces are touching each other.
3. Now, takeQ0 in your right hand. Try to insertQ0 into the slot[γ0β0] of Q1 and at

the same time joinQ2 andQ0 along the segment[α1α3].
4. To finish the assembly of the quadruple point, takeQ3 in your right hand. The

goal is to pushQ3 through the slot[γ2β3] of Q0 and atthe same timeQ1 and
Q3 have to be joined along the segment[α0α2]. Moreover,Q2 andQ3 have to be
joined along the segment[γ2β2]!
There is a trick to do this! The flexibility of the matter here is absolutely neces-
sary.
The trick consists with your left hand to flatten togetherQ2 andQ1 between your
thumb and your index finger – level with pointβ2 – so that they can be pushed
together into the slot[α0Q] of Q3 until they reach the quadruple pointQ on Q3.
Thenβ2 on Q2 can move towardsβ2 on Q3. α2 on Q1 can move towardsα2 on
Q3. β3 on Q3 can move towardsβ3 on Q0. The quadruple pointQ can now be
assembled by pushing all the points in their right position.

5. Add the four pentagons.
6. Add the four ventral faces.

Fig. 9 Open halfway model: handmade models need ability, precision andperseverance. The pen-
tagons are obtained by gluing together two cardboard sheets –one side in red for the one and one
side in blue for the other. To work the rhodoïd, a steel edge and afine cutter are necessary. To mark
the rhodoïd from the plans, needles and a small hammer were used. Faces are fixed together with
adhesive tape. The self-intersection line is drawn by using a pencil with permanent ink.
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4 Closed halfway-model of the eversion of the cuboctahedron

This model is better suited to realize the eversion than the previous model.

4.1 Description of the construction

On this third model,

1. the four pentagons lean against the lateral faces of the regular pyramidPA0A1A2A3

where the basis is determined by the verticesA0(1;−1;0), A1(1;1;0), A2(1;−1;0)

andA3(−1;−1;0) and where the apex isP(0;0;
3
2
).

2. Bi ∈ [PAi ] and their third coordinate is 1; furthermoreBi ∈ Qi+1 for i ∈ Z/4Z.
Consequently, the accesses to the quadruple pointQ are closed by the dorsal
faces: the halfway-model is said “closed”.

3. LetΩ be the pointΩ(0;0;−3) andV3 the plane(A3ΩA0). Then the coordinates
of the vertexC0 result fromC0 = P0∩ (A2B3B1)∩V3.

All the coordinates can then be calculated. The quadruple point is the pointQ(0;0;1).
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Fig. 10 The pentagonP0 at the central stage; remember thatQ0 =C0B1A2 andR0 =C0A2A0.
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4.2 Coordinates
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4.3 Decomposition in several geometries with JavaView

Inside a JavaView applet, it is possible to create differentgeometries; the follow-
ing pictures illustrate this possibility. Pentagonal faces, dorsal faces, and ventral
faces are represented separately for a better understanding of the model. The self-
intersection line has also been added after calculation of all the vertices. We touch
here the limits of the software: it could be very useful to have a software which
allows to isolate directly the self-intersection line, specially for the study of its evo-
lution along the eversion. This stays actually out of reach with JavaView.

Fig. 11 Closed halfway-model; decomposition in different geometries with JavaView. It is useful
to locate the two perpendicular edges[A0A2] and[A1A3] and the squareB0B1B2B3 (in green).
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The next picture shows the same handmade model photographedin artificial
light; the internal subdivision is completely observable.Just under the quadruple
point there is a chamber – completely closed towards the outside – which has the
shape of an octahedron with four ex-growths like four small teeth. It will be inter-
esting to follow its evolution during the eversion. The second image represents this
internal room with the self-intersection line and the quadruple point.

Fig. 12 Closed halfway-model of the eversion of the cuboctahedron. Imagined by Bernard Morin,
this model is really the cornerstone of this study.

Fig. 13 Internal room under the quadruple point and self-intersection line of the closed halfway-
model
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See also ([7]) for halfway models with a higher level of symmetry; the article is
illustrated with engravings by Patrice Jeener. The displayof the open and the closed
halfway-models was enhanced after mail exchanges with JeanConstant. He made
two artistic pictures8 with the use of these models. Enjoy!

5 First eversion of the cuboctahedron

The initial and the final stages of the eversion are obtained by splitting its 6
square faces with 2 orthogonal polar-edges[A0A2] and [A1A3] and with its equa-
tor B0B1B2B3 (in green). By doing so, we get a polyhedron which have exactly
the same number of vertices(12), edges(30) and faces(20) as on the triangulated
halfway-models!

Fig. 14 Initial and final models of the eversion of the cuboctahedron.

On the initial model and on the final model, a same vertex has two antipodal
positions. Each triangular face is transformed in its antipodal face (see for instance
the orientation of the faceA0C2B3 on the two models), so one can observe that the
orientation of the faces has changed on the final model. Similarly, the north polar-
edge[A1A3] on the first model is changed into the south polar-edge[A1A3] on the
second model. Observe that these two edges are parallel. Thesame observation can
be done with the south polar-edge[A0A2]. On the second picture, one can also locate
the final position of the pentagonP0 =CoA0B0A1B1. Now, the four pentagons of the
halfway models are represented by the oscillating belt – composed with 12 triangles
– around the equator! The next picture illustrates the problem of the eversion of the
cuboctahedron and suggests the question: how does it work?

8 http://imaginary.org/fr/node/263

http://imaginary.org/fr/node/263
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Fig. 15 Initial, halfway and final models of the eversion of the cuboctahedron

Bernard Morin conceived a step-by-step deformation which deforms the halfway
model by means ofelementary transformationsconsisting in moving a vertex along
an edge of the polyhedron. In all, 22 steps are necessaryto transform the halfway
model (step 0) into the final cuboctahedron (in blue). But,only 6 steps are needed to
obtain a model without self-intersection line! All the models which intervene have a
twofold symmetry. What can be done to get the blue cuboctahedron (final step+22)
from the halfway model can also be done to get the red cuboctahedron (initial step
−22). So, if we consider all the 45 models from the model−22 to the model+22
then we have all the steps of the eversion!

Fig. 16 First cuboctahedral eversion (Maubeuge 2000). On the picture: Philippe Charbonneau.

A first description of this eversion with annotated picturesis available in my ar-
ticle Versions polyédriques du retournement de la sphère9, Retournement du cuboc-
taèdre10 I wrote for the revue L’Ouvert([8]) of the IREM of Strasbourg. In its “Re-

9 https://mathinfo.unistra.fr/fileadmin/upload/IREM/Publications/L_Ouvert/n094/o_94_32-45.pdf
10 https://mathinfo.unistra.fr/fileadmin/upload/IREM/Publications/L_Ouvert/n095/o_95_15-36.pdf

https://mathinfo.unistra.fr/fileadmin/upload/IREM/Publications/L_Ouvert/n094/o_94_32-45.pdf
https://mathinfo.unistra.fr/fileadmin/upload/IREM/Publications/L_Ouvert/n095/o_95_15-36.pdf
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tournement du cuboctaèdre” ([5]) François Apéry describes an other eversion which
simplifies the previous one with the help oflinear interpolations.

6 Conclusion

Three models with increasing complexity mark out the way towards the central stage
of the eversion of the cuboctahedron. The halfway model represents an ideal point
to start the study of the eversion. By building some models, the reader gives himself
means to understand better what occurs during a sphere eversion. Animations with
JavaView were also realized. Three of them were presented atthe conference. This
article reminds the long way of maturation and perseverancewhich preceded their
achievement. It is also an encouragement to all those who think that they don’t un-
derstand maths to believe in their own capacities and to develop them!
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