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Abstract

In this paper we give a simple application of sphenical inversion, the most
clementary among the non ekementary geometric transformations, and of
some of its gencralizations,

The principal motivation was an atiempt to increase the interest for
mathematics in high school students by proposing an casy but mathemat-
ically nigorous technique for creating new images, new shapes and, by
means of 3D printing, new nice material objects. Also in order to put once
again in evidence the possibility that mathematics can have something in
common with Nature and the Arts.

Amongst the generalizations of inversion (see [BI). [Hi], [Epl. [S1]).
we find 1deally more close to our point of view the hyperbolic inversion
ducto G. V. Schmpnmlli'. an important Italian astronomer not as much
known as a gecometer, who in [S2], i 1898, tned to represent organic
forms and the change from one species to another through geometry (see,
¢.g., [Gi-Gu]).

I Introduction

Nature offers our eyes every day extraordinarily beautiful forms, that look
always the same and always new, but that never fail to amaze us. An example is
represented by flowers: the pleasure we get from them is one of the most intense.
Maybe is this one of the reasons why artists often give in to the temptation to
reproduce them, sometimes emulating, sometimes interpreting nature, that s,
deforming their shape.

Everyone has their own preferences. Many have predilection for roses, but
some find calla-lilies (or arum libes) more fascinating, because of their slender
elegance, which firmly soars spiraling upward. It’s not hard to find callas in
vases and gardens, or in paintings. A bouquet of callas, as that in Fig.1, 1s an

'Giovanai Virginio Schiapaselli (1835-1910), astronomer and historian of science, senator
of Kingdom of haly. Bruce and Royal Astronomical Socicty gold modalist, discovered groups
of straight lines (canals) om Mars, rising doubts on existence of life on that planct, and gave
an explication of shooting stars as resaducs of comets. The relationship between his hy perbolic
transformation and standard imversion was observed by Luigi Cremona.
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Fig. 1 Bouquet of calla-liles

interesting subject to several painters, who may have been attracted by their
geometric profile and their nearly evanescence.

Drawings and paintings with callas as subject can be easily found on the net,
taken from museums and from more or less important art galleries.

Fig. 2 (a) Calla-liles (b) Great Peacock Moth

In Fig.2a and Fig.2b we have reproduced a watercolour painting by Stanis
Dessy, a Sardinian artist (1900-1986), and a Van Gogh's picture.

It is interesting to know that also in mathematics one can find a calla: the
extremely elegant and beautiful surface which bears her discoverer's name,
Ulisse Dini, (see [Di]). It can be drawn with Mathematica (see for example
[Ca-Gr]) by using the parametrization given by the map
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X(u,v)= ‘bsinusinv.bsinucosv.b (cosu +In [tan(%)]) +cv} . (10.1)

Fora= 32 b=5ue|-3x.-05]and v € [0.02, 7/2~0.02], we get

Fig. 3 Dini's Surface Fig 4 Pscudosphere

Dini’s surface can be obtained through an isometric deformation from the
Eugenio Beltrami’s Pseudosphere *, which is parametrized by

X(u.v) = ‘sinu SIN v, SINWCOS v, Ccosu + In [lan (;)]} .

Therefore these two surfaces, even though it does not appear evident at first
glance, share the property of being curved in the same way in every point. More
precisely, they have Gauss curvature K constant and equal to —1.

One may wonder whether it is possible to create by means of mathe matical
tools a composition resembling any of those mn Fig.1 and in Fig.2. In order to
draw a bouquet from the Dini’s surface, it is necessary to find a way of bending
it in a proper way, to obtain a visually pleasing composition.

It 1s important to observe that this can be done through a spherical inversion.
This is a non elementary (re. non linear) geometric transformation, in fact one
of the simplest, besides rigid motions (the congruences) of Euclidean geometry.

In the following sections we will briefly recall the notion of inversion, some
of its well known properties and some generalizations, not as much well known.
But first of all we show what our bunch of “flowers™ looks like:

Section 2 of Livia Giacardi's interesting paper [Gi] of 2013 ESMA proceedings is devored to
the Beltrama's cardboard model of this pscudo sphencal surface.
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The number r? is the power of inversion.

From the definition it is easy to determine the mutual position of P and P’
with respect to y:

l. P~ P’"ifand only if P lies on the circle y.

2. If P isinside y, then P’ is outside y, and P’ is inside y if P is outside.

3. (P")Y = P (that is, the inverse of the inverse of P is P).

Moreover, there are very simple geometric constructions to find the inverse
P’ of P # C. Besides the tnivial case, when P belongs to y, we have two cases:

1. The point P is inside y. Let TQ be the chord of y through P perpendic-
ular to CP. Then the inverse P’ of P is the point of intersection of the
tangents to y at 7 and Q.
The point P is outside y. Let R be the midpoint of the segment CP,
and o the circle with center R and radius CR = PR. Then o intersects y
7 and Q. PT and PQ are tangent to y, and the inverse P’ of P is the
intersection of 7Q and CP.

)

Once we have leamt how to find the inverse of a given point, it 1s interesting
to see how are the inverses of sets of points. If the figure to invert is a circle, the
result, simple and surprising. is a Steiner’s theorem that in [Pa], p.178, is called
the fundamental theorem of inversion:

Theorem 2.1 The inverse of a circle is a circle.

More precisely one has the following two cases:

1. Let y be acircle of radius r and center C, § a circle of radius s and center
Q. Assume C outside 4 and let & be the power of C with respect to &.
Let f the dilation with center C and ratio A = r2/k. Then the image &
of § under inversion in y is the circle of radius A -s whose center is the
image £(Q) of Q.
Let 5 be a circle passing through the center C of a circle y. The image of
§ minus C under inversion in y is a line £ not through of the center C;
the line £ is paraliel to the tangent to § at C.

)
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It is also well worth considering inversions of other conic sections. We must
here remark that, to represent with the program Mathematica the mverse of a
parametrized curve, it 1s convement to translate condition (10.2) in the formulas
relating the coordinates of a point P and those of its inverse. These formulas are
obtained by observing that, when the point P descnbes the curve «, the inverse
curve o', i1s drawn by the point P’ given by

r’'(P-C)

P'=C 4 . (10.3)
I1P-Cj?

Here we have denoted by || P — C|| the length of the segment CP.

Let us show (in red) some inverse curves of conics. Inversion of a parabola
with respect to circles centered at its vertex and its focus gives, respectively, a
cissoid of Diocles and a cardioid:

\/@

Fig 6 A parabola with its inverse with respect to circles cemered in its verex (lefl) and
in its focus (right)
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For an ellipse, taking the circle of inversion centered in a vertex, in the
center and in a focus of the ellipse, we obtain respectively a witch of Agnesi, a
lemniscate of Booth and a limagon of Pascal

I~E01)

Fig. 7 An cllipsc with its inverses with respect to circles centered in one of its vertices
(left), in the center (middle) and n one of its foci (right)

When the conic we want to mnvert is a hyperbola and the circles of mversion

are chosen as for the above ellipse, we get a srophoid, a lemniscate of Bernoulli
and a limagon of Pascal, respectively.

| |
Fig 8 A hyperbola with its inverses with respect to circles centered in one of its vertices

(left), in its center (middle) and in one of its foci (right)

But it 1s also interesting to see i what way the mversion deforms tnangles
and squares.

RN @
\‘\ o J/ ‘

Fig 9 Inverses of a triangle contained in (/egff) and containing (right) the circk of
imversion
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Fig. 10 Inverses of a square with respect to a arcle mside the square, and to a circke
outside the square

3 Inversions in three dimensions

Let us now consider the inversion with respect to a sphere, to explain the way
Fig.5 was obtained.

Conditions (10.2) and (10.3) do not change when we want to invert a point
P # O in ordinary space with respect to a sphere centered in O and of radius r.
But now, besides the curves, we can invert planes, spheres, quadrics and more
complicated surfaces, as it can be seen in [Ca-Gr].

For example, in Fig. 11 are represented the Mobius strip

1) . - o &
X(u.v)=- lcosu+ voos;cos:«.smu+ uoosismu.vsm 5,

and its inverse with respect to the sphere of radius 2 centered in the onigin:

Fig 11 A Mobius strip with its inverse

In Fig.12 we can see a torus and, on the nght, one of the famous Dupin
cyclides, which held also J. C. Maxwell's interest (see [Mx1]). This cyclide can
be obtained by mverting the torus

X, v) = {cosu(8+ 3cosv),.sinu(8 + 3cosv), 3sinv}

with respect to the sphere centered in the point C = (0, 2,0) and of radius 2.
Now we draw in Fig.13 two of the surfaces we need to compose the image
in Fig.5.
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Fig 12 A torus with its inverse

The inverses of the Dini’s surface given by parametrization (10.1) with
respect to the sphere centered in (—0.63, 150, 162) and of radius 150 and with
respect to the sphere centered in (—0.63, 280, —162) and of radius 280 are:

Y

Fig. 13

And finally we are able to obtain the bouquet in Fig.5. We just put together
the surfaces in Figures 3 and 13 and the two other inverses that we get by invent-
ing the Dami’s surface with respect to the sphere centered in (—0.63, —150,—162)
of radius 150, and to the sphere centered in (—0.63, 280, —162) of radius 280,

4 Digression. 3D Printing of the Dini bouquet

Probably the reader knows what 3D printing is. During the last 4 - 5 years it
sticked out from technical reviews and specialist environment to come to mass
reviews and TV. In a centain sense, 3D printing “brings to real life” solid objects
who live in the virtual worlds created by computers. Thanks to it we can realize
and keep in our hand a very precise copy of the Dini surface bouquet. Those who
do not know enough about 3D printing techniques will find some details further
on this paragraph. The picture below shows a virtual model of the bouquet (on
the left) and a photography of the corresponding physical model of it
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Let us spend some words more about this technique. First of all, any
application of these or other surfaces in physical world bases on the realization
of matenial models of such objects. By means of scientific, design or engineering
software it is possible to get 3D models, 1.e. models that exist in a virtual three
dimensional space in the memory of a computer and of which we can see n
perspective some projections and animations giving us the impression of being
walching real objects.

Techniques of rapid protatyping and 3D printing, born in the end of
the eighities of last century, allow to camry out the next siep, that is to take
mathematic surfaces to the concrete, real world in the form of tangible objects,
which we can hold in our hands, rotate, and observe from different angles,
to get a precise idea of their geometrical and topological properties. The
mentioned terms indicate a senies of techniques widely used to build conceptual
and functional prototypes in several industnial fields, like automotive, electric
household apphiances, toys, jewels and medical fields, with not neghgible
applications in artistic, cultural and archeological areas. The main innovation
introduced by these techniques (1n the following we will use just the 3D printing
term, which generally indicates medium to low cost systems that do not require
a specific technical competence to users, while the rapid prototyping term is
associated to the industnial/professional systems: the bases of the operating
principles are the same) is that they make realizable every Kind of shape, no
matter how complicated they are, with the sole condition that they represent real
solid objects, 1.2. not impossiblke figures. Shapes can be complex, can have back
drafls, undercuts, inner canals of cavities, features that make them impossible 1o
be realized by means of more traditional techniques such as lathe or CNC cutter
(for example: a car’s engine block, including the duct for the liquid coolant, or
the accurate reproduction of an human skull). This is made possible thanks to the
working method of 3D printers. They decompose the 3D model to be realized
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usually a closed tnangle mesh — into a collection of plane parallel sections. Then
they execute the realization of every layer. in thickness variable between 0.05
and 0.5 mm depending on technology. until they produce a concrete part that
corresponds to the virtual object. Matenals used vary depending on technology:
photopolymers, ABS resin, nylon, plaster, ceramic, metal.

Fig. 14 Photos of 3D prints of models of surfaces; From left: part of the Klein bottle in
Lawson’s version; Moebius band with circular boundary; Boy surface according to E
Apéry’s parametrization (see [Ap])

So, what do we have to do if we have the equations of a surface and we
want a physical model of it? Unfortunately, the operation is not straightforward.
In fact. the input needed for an RP system is a watertight polyhedral mesh
which represents a real object. In the main applications of 3D printing (design of
new products in industnial field) the solid model is produced by solid modeling
software, specifically concerved to give outputs ready to use with 3D printers,
or by reverse engineering techniques. There is a survey of scientific software
which allow the representation and visualization of surfaces starting from their
parametrization (equation), like Mathematica, Maple, MatLab, MathCad, but
such representations are not usable on a 31 printer. It 1s necessary to shift from
the bidimensional exhibits needed in visual/graphic environments to volume-
including shells sustable to 3D printing environment. This idea can be transferred
into a series of mathematical operational steps, whereof starting with a surface
parametrization we end up having a closed mesh directly usable by a 3D printer,
which effectively represents our surface. It is relatively simple to obtain a
printable solid model for regular surfaces without multiple loci by using the
basic tools of differential geometry: 1t suffices to define some parallel and
normal surfaces to the given one to construct a solid shell around it Otherwise,
in presence of self-intersections and/or singularities (and these are often the
most interesting cases) we need to solve nontrivial problems which involve
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more differential geometry and computational geometry and which request
skills transversal to both the mentioned scientific fields.

We finish this short journey into the world of 3D printing saying that in the
last decade 3D printers performances have been constantly increasing while
their price has decreased. In a close future, that probably has already begun, it
will be normal to have a 3D printer connected to our PC just like today everyone
has a inkjet or laser printer. Today (2013) it is already possible to buy a small
3D printer kit, with basic performances, at a price as low as 600 dollars.

5 Notes on circular inversion

Historically, the interest for transformations of the entire plane and for the
properties that are invanant with respect to them, to solve geometrical problems,
comes from the development of projective geometry of the XIX century, mainly
due to Gaspard Monge (1746-1818) and to Jean-Victor Poncelet (1788-1867).

As regards the iversion, to our knowledge the most authontative references
are, in chronological order, the E Buzberger pamphiet [Bu], reviewed by Amold
Emch in the Bulletin of the American Mathematical Society, vol. 20 (1914),
pp. 412 - 415, and the very interesting Boyd C. Patterson’s paper [Pa] on the
origins of the geometric principle of inversion. Another useful reference for
circular inversion and its generalizations, including those mentioned in the last
two sections of this paper. is [Ca).

Let us follow the more important stages of this route from the beginning, in
chronological order.

The first paper containing in nuce the idea of inversion appears in 1600,
when Frangois Vidte gives a solution of the tenth Apollonius problem *. On
pages from 5 to 9 of [Vi], Viéte presents a solution by using the center of
similitude of two circles.

After more than two centuries, the belgian mathematicians (and good
friends) Germinal Pierre Dandelin [Da] and Adolphe Quételet [Qu], also known
for the so-called Belgian Theorems (see, e.g.. [Hu)), arrive, independently one
from the other. to the principle of inversion when studying the properties of
the focale of conic sections (see, e.2., [Pal, p. 156) by means of stereographic
projection. In particular, Quételet deduces the relation rr’ = R? between radii
vectores that are reciprocal with respect to a circke of radius R, and also the
explicit analytic formulas of the circular inversion.

But the first who gives the precise definition of inversion and establishes
and applies inversion is Jakob Steiner, during his researches on the geometry of

IPROBLEMA X: Daris rribus circulis, describere quartum circulum guem illi contingans. (To
draw a cwrcle thar rouches three given circles in a plane.)
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the circle and the sphere through the theory of similar figures (see [Bu)). Later,
in 1847, Joseph Liouville will give to the inversion the name of rransformation
par rayons vecteurs réciproques. Again from [Bu] it comes out that Sweiner was
interested in this study in the attempt to solve the following problem: given in
a plane three circles, to find the locus of a point whose polars with respect to
three circles pass through a point

In 1831, Julius Plucker (see [P1]) finds inversion within the theory of poles
and polars (in the next section we shall recall the construction of poles and
polars of a conic), whik in 1832 Ludwig Immanuel Magnus, in [Ma), discovers
iversion as a particular case of a bijective map between two planes.

In 1836, Giusto Bellavitis, informed, even if partially, about the results
obtained by Dandelin and Quételet, realizes that inversion 1s a very useful
instrument that, combined with other geometric tools, could lead to new
theorems. His memoir [Bl] contains an elementary and very complete exposition
of various geometric transformations such as those of similanty. projection,
inversion, reciprocal polars, homology.

In 1842 there are two more simultaneous and independent discoveries of a
new principle that is nothing but the inversion. The mathematicians involved
are John William Stubbs and John Kells Ingram, both at Trinity College in
Dublin; three of their papers on the subject even appear in the same volume of
the Transactions of the Dublin Philosophical Society (see [St1], [S12], [In1] and
[In1]).

In 1845, William Thomson (Lord Kelvin) communicates to Liouville his
“principle of reciprocal points”, a method he found useful to solve a cerntain
problem in electricity. Louville develops the analytic theory of the Thomson’s
transformation that in this occasion he calls rransformation by reciprocal radii.

The last we have to mention is August Ferdinand Mobius, that in 1855
undertakes in [Mo] a systematic study of inversion.

6 Generalizations

A quite reasonable question is whether there exist other similar, simple, geomet-
ric, useful constructions, that can also give nise to new shapes. In 1838, Giusto
Bellavitis of Padua proposed in [BI] a very natural generalization of the circular
inversion by taking any conic instead of a fixed circle, and allowing the center
of the inversion to be placed anywhere, and not only in a special position as, for
example, in a center of symmetry.

Such a generalization can be obtained by considering that, as for the circle,
for any conic there is a canonic, geometric way to find the point P’ inverse of a
point P. This happens thanks to the fact that a conic determines in its plane a
cormespondence between points P, the poles, and straight lines p, their polars,
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For example, given an ellipse o, if P 1s a point outside o, its polar p is the
straight line through the points  and 7" where the two tangents to o from /
touch the conic.

When P is a point of o, there is only one tangent to o at P, and therefore
this tangent coincides with the polar p of P.

If P is inside o, any two straight lines ry, ra, ry # ra, passing through P,
intersect o in four points Ay, By, A,, B,. Let Q and T be the intersections of
the lines a,. by and a,. b, respectively tangent (o o at the points A,, B, and A,,
B,. Then the polar p of P is the straight line through Q and 7'. The following
figures illustrate the first and the third case.

Fig 15 Polars (red) of a point P outside or inside an ¢llipse

Therefore, according to Ludwig Immanuel Magnus and Julius Plucker (see
[Ma] and [P1]), we can define the inversion with respect to a conic o in the
following way.

Definition 6.1 Let A be a point fixed as origin in the plane of o. Then the
imverse P’ of a point P of this plane is the intersection between the polar of P
with respect to o and the straight line through P and the origin A.

In Fig.16 are represented an ellipse and the construction of P* when the
point P is outside (left) and inside (right) an ellipse:

If P belongs 10 o, its polar line is the tangent to o at P and the straight line
through P and A intersects this tangent at P. Thus P - P,

Except for the origin A and the two points (real or imaginary) where the
tangents from A to o touch o (these are the three principal points), every point
P has only one mmverse P,
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Fig. 16

It is not difficult to foresee that the study of the inversions with respect to
the different conics and to various origins can be even rather complicated. This
work has been achieved in 1865 by T. A. Hirst in the paper On the gquadric
inversion of plane curves [Hi]*, where one can find an ample and detailed essay
on the subject. Here we shall only mention and illustrate by drawings the more
interesting and useful of the special cases corresponding to particular choices of
the conic and of the origin. In the following, the fundamental conic 1s the conic
with respect to which we invert points.

(D) The fundamental conic is a hyperbola with its centre at the origin A.

The inverse of every straight line parallel to one of its asymptotes is a
straight line paraliel to the other asymptote, and the two straight lines
intersect on the fundamental hyperbola.

The inverse of every other straight line is a hyperbola passing through
the origin, and having its asymptotes paraliel to those of the fundamental
hyperbola.

The inverse of any hyperbola which does not pass through the origin,
but has its asympltotes parallel to those of the fundamental conic, is an
hyperbola possessing the same properties; and if the hyperbola we want

“An Italian version of this paper, published in Arnali di Maremarica Pura ¢ Applicata, Serie
1. Dicembre 1865, vol. 7.1, pp. 49-65. with titke “Sulla Inversione quadnica delle curve pianc™, s
due to Luigi Cremona. Here is how the paper is introduced: We consider a good and useful thing so
bring rhis importans and very elegans work of our friend, Mr. Hirst, 1o the knowledge of the readers
of the Annali. (Siimiamo cosa buona ¢ wile il far conoscere ai kesrort deghi Amnali ques o imporiane
ed elegansissimo lavoro del nostro amico, il Sig. Hirse ) (Luaigi Cremona)
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to mvert has centre at the onigin, its mverse will have centre in the ongin
as well

(Ia) The conic is an equilateral hyperbola.

Choosing again the origin at the centre of the hyperbola, the method of
inversion becomes identical with the hyperbolic transformation investi-
gated by Giovanni Virginio Schiaparells, in his interesting memoir Sulla
trasformazione geometrica delle figure (see [S1]).

(ID The fundamental conic is an ellipse and the origin is at its centre.

The inverse of every straight line in the plane will be an ellipse passing
through the origin. and at the same time similar, as well as similarly
placed to the fundamental ellipse (that is, in the two ellipses, the axes of
symmetry corresponding in the similarity are parallel).

Every ellipse not passing through the onigin, but similar and similarly
placed to the fundamental one. has for its inverse an ellipse with the
same properties; and should the primitive be likewise concentric with the
fundamental ellipse, so also will be the inverse:
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Fig 17 Inversion of three paralk| straight lines

7 Schiaparelli’s hyperbolic inversion of some surfaces

In this section, we illustrate by some examples how the Schiaparelli hyperbolic
inversion transforms figures and bends surfaces. Other examples can be found
in [Pe].

To obtain a generalization of the sphencal inversion, Schiaparelli substitutes
the sphere with a quadric (see [S1]). Here we only consider the particular case
when the quadric s a precise hyperboloid of two sheets.

e The circular cylinder of parametrical equations

x(u,v) = acosu
ylu,v) =asinu
z(u,v) =v

with respect to the hyperboloid of two sheets of equation xy + xz + yz =
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has as mnverse

Fig 18 Hyperbolic inverse of a cylinder
e The inverse of the pseudosphere of parametric equations

ylu,v) = acosucosv

{x(u.v) = @ COSusSinv
z(u,v) =ac05v+aln(tan(§))

with respect to the same hyperboloid is

Fig. 19 Hyperbolic inverse of a pseudosphere

e Next we consider the Dini’s surface of parametrical equations

ylu,v) =acosucosv

x(u,v) =acosusmnv
z(u,v) =acosv+aln(tan(3)) + bu
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Its inverse with respect to the same hyperboloid of two sheets 1s

‘ig. 20 Hyperbolic mverse of a Dimi’s surface

e Finally we apply the same inversion to the tori of parametric equations
Xy, v) = {cosu(8 + 3cosv)— 12, sinu(8 + 3cosv) — 12, 3sinv + 20}
and
X3(u,v) = {cosu(8 + 3cosv) — 20, sinu(8 + 3cosv) — 20, 3sinv — 20} .
From the left to the right, the corresponding inverse surfaces are

Vv ©

Fig. 21 Hyperbolic inverse of a Dini’s surface

Remark A modem analytic treatment of inversion with respect to a general
quadric of a n-dimensional vector space, endowed with a non-degenerated
symmetric bilinear form, can be found in the 1983 D.B.A. Epstein’s lecture
notes [Ep).
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