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Abstract
The meaning of the term ”cone” defined in this article is much broader

and more flexible than the classical one. Our extension of this concept lays
the foundations for a broad mathematical theory that could be used by
artists. This article is illustrated by examples taken from mathematical
and botanical sources.The powerpoint [S] is a kind of summary of this
article.

1 Introduction

(From Wikipedia) �In a letter addressed to Émile Bernard dated 15 April 1904,
Cézanne ambiguously writes: ”Interpret nature in terms of the cylinder, the
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sphere, the cone; put everything in perspective, so that each side of an object,
of a plane, recedes toward a central point.”�

Except during the Renaissance, painters have not studied and deepened the
mathematics underlying their works. In the best cases, they have used what
mathematicians have thought of and discovered.

In particular, many mathematicians have developed the study and the repre-
sentation of their objects using numbers as a powerful coding system. Geometers
and topologists use a more direct and intrinsic approach to define and under-
stand these objects. Knots, polyhedra, spheres and tori have been the main
fundamental objects they looked at and used to that aim.

In this article, I would like to focus the attention on the cones mentioned by
Cézanne, and to what can be done with these cones. In the past, with the work
by Apollonius and his successors involved in the theory of conics and quadrics,
cones have played an important role in geometry, then, much later, in mechan-
ics and physics. Mathematicians did not emphasize the fact that cones are also
present in perspective theory, thus, in some sense, in projective geometry : re-
mind the �central point� Cézanne was evoking.

The notion of cone I define and use here is much larger and flexible than
the classical one. The introduction of different manners to assemble these cones
through identification and attachment along singular elements allows the con-
struction of a much richer collection of objects than the one obtained by the use
of Cézanne’tools.

The article, illustrated by examples borrowed from the mathematical and the
vegetal worlds, does not address the mathematician who would like to develop
and expand the mathematical content along several directions1 (projections, ap-
parent contours, duality, transformations, enumeration, algebraic and numerical
representations, sections, trajectories, in Euclidean spaces or not). It addresses
the artist who might wish to play with all these cones and create new beautiful
works for the pleasure of our eyes and of our mind.

2 Singularities

1The mathematical theory behind this paper is the enormous theory of fiberspaces with
singularities, whose first chapter is the theory of cones.
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A quasi standard cone, a view by Jos Leys
Figure 1

In a previous paper [1], several concepts and tools have been set forward, in
particular the ones of singularity and of singular part of a shape.

Typical examples of singularities are for instance the vertices of a polygon in
the plane, or the vertices of a polyhedron in the usual space, like the four vertices
of tetrahedron, the six vertices of the octahedron (images from Wikipedia) :

Figure 2

D being a local connected domain of the shape, we shall say that it is homo-
geneous of dimension n, if any neighborhood of any point of D has the topological
dimension n.
For instance :
- any edge of the tetrahedron, without the two vertices which close that edge,
is a 1-dimensional domain ;
- any face of the tetrahedron, without the triangle which borders it, is a 2 di-
mensional homogeneous domain.

Any subdomain of D whose topological dimension is k < n is a potential
singular part of D.
Thus, any point (k = 0) of a face of a polyhedron is a potential singular point,
any curve (k = 1) drawn on the face, is a potential singular part.

Vertices of polygons and of polyhedra are not only potential singularities.
They will be defined as (incarnated) singular points.

3 Cones

3.1 Introduction

Traditionally, there is nothing inside a tetrahedron : it is an hollow object. But
it may be filled with matter : it becomes then an heavy die, a full object. We
shall make the distinction between hollow cones and full cones.

In this paper we shall consider Euclidean spaces only. All the cones C we
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are going to consider will be here defined2 by the three following ingredients,
the two first ones a priori lying in an n-dimensional Euclidean space :

1) a vertex V (topological dimension 0), called the main vertex or the apex
of the cone.

2) a basis denoted by B(f), a closed domain of topological dimension n− 1,
or by B(h), which is the boundary of B(f), thus a closed domain of topological
dimension n− 2. [In the following example (Figure 3 left), B(f) is supposed to
be a full triangle].

Figure 3

3) an interval I ⊂ R (topological dimension 1) called the standard generator
or fiber, each of whose inclusions into the cone through a non decreasing differ-
ential mapping: iP : I → Rn is a curve that joins a point P of the basis to the
apex V . This curve is called the local fiber at P .

Definitions: A cone C with B(f) as a basis is called a full cone of dimension
n. A cone with B(h) as a basis is called an hollow cone of dimension n− 1.
We shall say that a cone is linear if all the local fibers are intervals (all the local
inclusions are linear mappings).

3.2 Standard basic examples

3.2.1 As an example of full cone, we may choose the full tetrahedron. We can
look at it as a (linear) cone if we:
- choose a vertex of this tetrahedron and name it V .
- consider the opposite closed face to V - its topological dimension is 2 - and
name it B(f).
- consider the intersection of the tetrahedron with any line which cuts B(f) at
any P and joins V . This intersection is the local inclusion of the interval I, the
fiber at P .
The topological dimension of the full tetrahedron is 3 as being equivalent to a
full sphere called a 3-dimensional ball. The boundary of this cone is the com-
plete hollow cone associated with the full cone.

2This definition can be understood as the result of the Bourbakist point of view : Bour-
bakist in the good sense, i.e. a structuralist point of view, looking at the elements of an object
which characterize its structure.
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3.2.2 Now, from the full tetrahedron, we can extract an other hollow cone
by considering the three faces adjacent to V :
- V remains the apex of that cone,
- its basis B(h) is now the close curve, i.e. the hollow triangle which bounds
B(f), the opposite face to V ,
- the intersection of the tetrahedron with any line which cuts B(h) at any P
and joins V . This intersection is the local inclusion of I.

3.2.3 Simpler, Figure 4 shows a green triangle which is a full 2-dimensional
linear cone lying in the usual plane. Its basis bb′ is the opposite side to the apex
V . The boundary of bb’ is the set of the two points b and b′. The two hollow
1-dimensional corresponding cones appear on the right.

Figure 4

3.2.4 When n = 2 (the plane), Figure 5 shows the example of four hollow
1-dimensional cones whose vertex V is an antibubbling singularity (up) or a
bubbling singularity (down). The basis here has two points which are not vi-
sualized here. The curves g and g′ are local inclusions of the interval I. I shall
call that cone a �Chinese hat�. In each case, one sees two cones with the same
apex V : the larger one is non linear, the linear one comes out from the previous
one by considering the tangent lines in V to g and g′ respectively.

Figure 5

3.2.5 Consider any family of knots in the usual 3-space (simpler, a pencil of
conics), points in that space which play the rôle of apices: look at the mountains
you obtain !

4 A few remarks and definitions

4.1 Any n-dimensional full cone C with apex V and basis B(f) gives birth to
two (n-1)-dimensional hollow cones with apex V : the complete hollow cone of
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C, which is the boundary of C, and Cc the coat of the full n-cone whose basis
is the boundary of B(f). This coat is included in the boundary of the full cone.
Conversely, a hollow (n-1)-cone with basis B(h) can be the coat of an infinity
of n-cones. Any two such n-cones share the same boundary B(h) of their re-
spective basis B(f) and B(f)′. They wear the same coat. These n-cones will
be named the wearers of the (n-1)-cone.

4.2 Figure 5 shows the example of a linear cone which is defined by the
tangents at its vertex V to the fibers of a given cone, with the property that
the angle between the tangents is not null, nor equal to π.

Cones with such a property, i.e. the tangent cone is not a linear (n-1) sub-
space, will be called rough cones.

A rough cone has a unique linear tangent cone.

But conversely, a linear cone has an infinity of rough cones for which it is
their common linear cone.

4.3 If the tangent cone is such a (n-1) linear subspace, the cone is a soft or
spherical cone. Any point of an half-circle, of an half-sphere, is thus a spher-
ical apex of a soft cone and a potential singularity. It becomes an incarnate
singularity when its location becomes defined by the supplementary data of a
directional line for instance.

Half-sphere as a soft 2-cone in the
3D-space:

its basis is a circle
A view by Jos Leys

Arc of circle as a soft cone :
an edge joining its basis

B(h) = {P,P’}

Figure 6

A particular interesting situation happens when the main vertex of a cone is
located on its basis. In that case, we shall speak of a basic cone. Basic 1-cones
play a fundamental role.

4.4 Let us consider the 1-dimensional hollow cone named the cusp3 and
defined by:
- the apex V (0, 0) is the origin of a usual orthogonal coordinate system of the
real plane,
- the basis B(h) of this cone is the set of the two points P (1, 1) and P ′(−1, 1),

3The cusp is the most basic singularity. It has been used as a geometrical support in a
study of the universal phenomenon of ambiguity.
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- I is the interval [0, 1], and the local inclusions of I in P and P ′ respectively
are defined by the parametric equations:

Figure 7

The line which joins the apex V to any point Q(x, y) of the fiber iP (I) has
a slope defined by the ratio y/x = t/t3 = 1/t2. When t tends towards 0, this
slope becomes infinite, so that the tangent in V to this fiber is the vertical line.
For a similar reason, the tangent in V to the fiber at P ′ is also the vertical line.
In other words, that cone has a unique vertical tangent in V : the linear tangent
cone is an half linear space.

A cone whose linear tangent cone is so degenerated will be called a penetrat-
ing cone or a spine.

4.5 Let us go back to the examples illustrated by Figures 5 and 7. In Figure
5, the upper cones seems to be the symmetric of the under cones with respect of
the horizontal line. More generally, any cone has a symmetric one with respect
to any domain parallel to the domain containing its basis.

Figure 8

4.6 Let C be a given full n-dimensional cone with vertex V . Let B be a n-
dimensional ball whose center is V : the boundary of that ball is the (n-1)-sphere
centered in V . We suppose that the ball is small enough so that the common
part to the ball and the cone is entirely contained in the cone.
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Figure 9

The complement C* of C in B is a full n-cone with the same coat as C.

Let us consider the �half� n-spaces through V . If C is contained in one
such half-space, C will be named the male part of B, and called a male cone.
Its complement is the female part of B and is a female cone.

4.7 Let F be a given continuous family of (n-1)-cones Ct parametrized by
t belonging to I, with apex Vt and with the same basis B. Let A be the curve
t→ A(t) = Vt : this curve will be called an axis of the family.

Figure 10

Let T be a (n-1)-dimensional domain which is transverse to the axis, and σt
be the section of the cone Ct by T . We suppose that for any t′ < t the closure
of σ′t is contained in the closure of σt.
Then the closure of F is a n-dimensional cone foliated by the cones Ct.

Any (n-1)-cone C is the coat of an associated canonical wearer F(C). An
axis of F(C) be also called an axis of C.

Discrete foliations of cones can be worked out in the same spirit.

4.8 Let C be a 1-dimensional cone, P and P ′ the two distinct points of its
basis. Let us suppose that the curvatures at any point of the fibers are not null
or infinite except maybe in V .
Such a cone, like the left one, might be named a half smiling cone if these
curvatures have the same sign.
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Figure 11

4.9 Let Ci be an (n-1)-dimensional cone embedded in a n-space and called
the motive, h(R) = Λ be a curve of such a space (more generally a k < (n− 2)
dimensional domain), and V a point of Λ. Let Si the shape defined by Si =
Λ×Ci so that V is the apex of a cone Ci.
The shape Si will be called a regular conical excresence of Ci along Λ, Λ being
its singular curve or again its handle. Note that several Si can share the same
singular line, so that the union S =

⋃
Si of these local shapes can be taken into

consideration.

Figure 12

(More generally, we may suppose that, for each V , the corresponding cone is
subjected to an eventually continuous controlled change of metrical properties).

Given a curve Λ in a n-dimensional space, a point V of that curve for which
the tangent to the curve is well defined, a transversal subspace to the curve in
V is a (n-1)-dimensional subspace which does not contain the tangent.

Conversely, suppose that V belongs to a shape S so that any transversal
subpsace to V defines a cone Cv on S whose main vertex V is on Λ, then Λ is
defined as a singular curve of S. When Λ lies on a cone, S will be named a flag.
When the cones are full cones, we shall say that S is a mountain and Λ its line
of summits.

A fairly nice mathematical example of the coat of such a mountain is the
Whitney umbrella where Λ is a line :
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The Whitney umbrella from www.algebraicsurface.net
Figure 13

4.10 Indeed, the way according to which cones are attached to singular
domains is not restricted to the consideration of their main vertices. Any other
singular part of dimension k′ < k of a (n-1)-cone, where k < n − 2 is the
dimension of a domain Λ, can be attached to Λ.

The �leaf� of a fen is called a penna, which is made of pinnulae, here
viewed as 2-cones, whose basis are attached to the singular curve named

the rachis.
Figure 14

4.11 Let Γ(∆) the group of symmetries of a part ∆ of the basis of a cone
C. ∆ induces the part C/∆ of the cone, and Γ(∆) will be called the symmetry
group of that part C/∆.

5 Compositions of cones

5.1 1-dimensional cones

5.1.1 Introduction
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Let us first give a list of non spherical 1-dimensional hollow rough cones in
a flat 2-dimensional space. Each one has tow edges : one of them will be called
the arm, the other one the anti-arm.

Figure 15

(It is amazing to compare this list published in 1976 [2], with the following
by Dürer around 1528 [3]: 1976 - 1528 = 446)

Figure 15 bis

Let us add to that list a soft 1-dimensional hollow cone, like an half circle or
an edge, a spine like the cusp, and the basic 1-cone, an edge whose one vertex
is the main vertex of the cone.
Each cone of the list gives rises to a series of n-folded arms cones like this
elementary one :

Figure 16

The basis of each of the cones Ci of the original list is a set of two points:
{Pi1 , P ′i1}. Each such cone gives birth to an infinity of wearers (full cones)
which can also be taken into consideration.

The boundary of a full 2-cone has: three points, the apex V and the two
vertices of its basis, the two curves of the hollow cone that join the vertices of
the basis to V (the arm and the anti-arm), and the curve of its basis B(f) which
joins the two vertices of its basis. All these curves may be viewed as singular
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elements of the full cone.

More generally, a fiber Σ of the cone is singular if it contains an element of
curve Λ such that the intersection of its neighborhood with the cone is a flag S
whose local conic motive is rough or a spine.

We are going to proceed to attachments of 1-cones along these different sin-
gular elements through processes of identification.

5.1.2 Self-attachment

Given a 1-cone, the identification of the two points of its basis gives rise
to a topological 1-sphere like a circle, while the identification of the two edges
adjacent to the main vertex gives rise to a basic 1-cone.

Figure 17

5.1.3 Attachment of cones by identification of their apex

The attachment by identification of the apex of two basic 1-cones gives birth
to one of the previous 1-cones.

Cones attached to each other by identification of all their apex to one of
them will be called spiders. In that case, each cone of the spider could be called
an arm or a tentacle. Figures 8 and 18 show examples of particular spiders.

Spider or Flower or Bouquet
Figure 18
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5.1.4 Attachment by identification of a unique point of their basis

5.1.4.1 Let Σ be a sequence of N various cones of the list, any cone Ci

appearing ni times in the sequence. Then two consecutive cones Ci and Cj -
where j can be equal to i - are attached by a unique point of their basis, if only
one point of the basis of Ci is identified with one point of the basis of Cj .

In that way, we shall say that we have got a garland or frieze of 1-cones, or
a flag if all the cones except one of them called the handle are attached to this
handle.

If the first cone of the sequence is attached to the last cone of that sequence,
we shall say that the garland is knotted or polygonal : we can understand a
knotted garland as as a knot with singularities.

C1 is attached to C2 which is attached to C3 which is attached to C1

Figure 19

A polygonal garland with 2N edges can be constructed with N cones.
Polygonal curves with an odd number of edges 2n + 1 may need n rough or
penetrating cones plus a soft cone. But an other way to get such a polygonal
garland is to divided each edge into two attached parts, and then to use 2n+ 1
cones to get it.
Each knotted garland generates a spider, its dual, but the converse is not always
true. Except lines, any other curve in any n-dimensional space can be decom-
posed in such rough or penetrating hollow 1-cones, so is a garland of hollow
1-cones.

5.1.4.2 Here is an example arising from the mathematical butterfly in catas-
trophe theory. The following local section of this surface can be viewed as a
garland of the two following cones :
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The Bird, the Swallow Tail
Figure 20

Appropriate deformations of the above drawing give birth to a stylization of
a bird.

The following shows a stylized fish as, first, the visualization of a white 1-
dimensional full cone where all the fibers have a unique other common point
than the vertex - but of course they could have many such common points.

The fish
Figure 21

But if we introduce fictive or virtual vertices in the middle of each edge (the
red points on the figure), we then define three hollow 1-cones with main vertex
respectively V , b and b′ from which the fish can be reconstructed.

5.1.4.3 Suppose a given 1-cone imbedded in a n-dimensional space. The
possibilities to attach an other 1-cone to one point of the basis of the given
cone is infinite, being ruled by the group of rotation of that n-space. Given
constraints can of course reduce this set of potential possibilities.

5.1.5 Attachment by identification of the two singular points of
their basis

Base of 1-cones are very elementary. Given a process of attachment (the
choice of the manner to identify the basis), there are infinite possibilities of at-
tachment of cones to a given one imbedded in an n-space, each possibility being
defined here by an element of the group of rotation of the (n-1)-space.
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We shall call a p-flag the set of p− 1 1-cones so attached to a given 1-cone, the
handle.

Here is an easy example in the plane (n = 2).

The given 1-cone is C1, while the 1-cone to be attached to it is C2, indeed
a clone to the first one:

Smile and Moustache
Figure 22

There are only two ways to attach the two cones with the same identification
of their basis. The first one gives a perfect superposition of the two cones since
they have the same shape (identity of O(1)). The second way, a symmetry,
gives rise to a true smile; or a moustache !

Here is an other way to construct the fish where a point of the basis of a
first cone is the apex of a second cone.

The contour of a fish built from two symmetric 1-cones
(can also be the complete hollow 1-cone of a fish)

Figure 23

5.1.6 Attachment along singular curves

We have been considering attachments along the apex V and the elements
of the basis. We now consider identification of the singular curves joining V to
the vertices of the basis, two such curves being able to be identified if and only
their curvature is the same.
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Given two red 1-cones with apices V1 and V2, this identification first implies
that the identification of V1 with V2, and the identification of a vertex b1 of the
basis B1 with a vertex b2 of the basis B2 : in other words, the attachment 4.1.2
and 4.1.3 have be done simultaneously, but that is here a part of the process
since the identification concerns all the points of the singular curves.

Figure 24

A sequence of N 1-cones in an n-space (n > 2) which are attached along a
singular curve g of a given one will be called a N flag along g.

The use of less usual 1-cones gives birth to unusual shapes, especially if all
the processes of attachement are used all together.

5.2 2-dimensional cones

5.2.1 Introduction and examples

5.2.1.1 First, let us show a very few 2-cones - the mathematical images are
borrowed from the net, see for instance �images of algebraic surfaces�:

The same operations of identification and attachment can be worked with n-
dimensional cones. Here are a few classical pictures of assemblies of 2-dimensional
cones attached along singular parts of their boundary, apices, edges, basis:

Figure 25
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A garland (or frieze)

Serpinski motive as knotted garland

Classical nodal surfaces
Figure 26

It is easy to extend these examples by adding more cones of different sizes,
or to start with other polyhedra including Gosset polyedra, using apices defined
through discrete subgroups of O(n), and reproduce similar constructions of at-
tached cones.

5.2.1.2 The vegetal world is also a source of examples. Let us first consider
the following standard mathematical 2-cone and one of its incarnation as a leaf
of the lily of the valley in the usual 3-space:
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Figure 27

This incarnation has the nice property to show possible fibers of the cone.
Nature is now going to attach along their basis two clones of that cone. Here
they are:

Figure 28

5.2.1.3 Let now us consider the following mathematical smiling 2-cones and
the two following leaves :
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Figure 29

The left leaf shows two similar sequences of half smiling 2-cones, more or less
symmetrically located on a singular curve like in Figure 14. But each central
cone is attached along a singular line of its border to two another cones, one
above and the other under itself. On the leaf of the right, moreover, all the
apices meet at the top of the leaf, on the singular curve. Indeed, these cones
getting very thin give rise to the �fibers� which appear on Figures 22 and 23.

5.2.1.4 Let us know consider the following leaf :

Figure 30

We discover that the so-called previous generic 2-cones which seemed to ap-
pear on Figure 30 say are indeed mountains in the sense we used to caracterize
the Whitney umbrella (Figure 13).

5.2.1.5 Let us give here a few simple other examples of 2-dimensional objects
created with more simple 2-cones using the standard techniques of attachment:
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For instance, the 2-cones of Figure 25 can be created by the classical identifi-
cation of the two edges adjacent to the apex of convenient �triangular� 2-cones
: cutting and opening the given 2-cones along a curve through their apex give
rise to the convenient triangular 2-cones.

The standard 2-band in the usual space can be created by attachment of
two triangular 2-cones C and C’ like full half-smiles, but which can have any
specific shape:

Figure 31

Twist the band as you wish in the usual 3-space, attach the corresponding
opposite sides and get Möbius bands, deformed cylinders and tori.

5.2.1.6 There are many ways to assemble cones of different shapes and to
create landscapes.
Here are two examples of such constructions: the first one, among the simplest,
show a double cone arising from the identification of the basis of two linear
cones in the usual space, the second one was made by nature, a few years ago.

Double cones by Jos Leys
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Figure 32

5.2.1.7 Here is a final remark about 2-cones, one that more generally applies to
n-cones. In the usual 3-dimensional space, let C be a hollow 2-cone with basis
B(h), D a 2-dimensional linear subspace which meets that cone. The common
part of C and D is a plane curve β. This curve may have singularities and mul-
tiple common points. Then the part of the fibers through these points between
D and the apex V of the cone are singular curves of the cone.

5.2.2 Creation of 2-cones from 1-cones

We are now going to look at two main techniques to create 2-cones from
1-cones.

5.2.2.1 From full 1-cones, by attachment:
Let us first recall that a full 1-cone is indeed a 2-cone since it is a 2-dimensional
surface.

The hollow tetrahedron gives an example of the attachment along singular
lines of a sequence of 3 standard linear full 1-cones:

(V1, b11, b12), (V2, b21, b22), (V3, b31, b32)

attached one to the other through the identifications of the singular lines

(V1, b12)@(V2, b21) (V2, b22)@(V3, b31) (V3, b32)@(V1, b11)

More generally, we shall call a polyhedral 2-cone such a 2-cone constructed
from a sequence of full 1-cones with a cyclic presentation of their singular lines.
Note that generically, this kind of 2-cone is not a standard polyhedron nor a
part of such a polyhedron.

Flags of 2-cones can be constructed by attaching other 2-cones along a sin-
gular line of one of them, or along the basis of one of them, or along a curve of
excresence.

5.2.2.2 From hollow 1-cones, by local transformations:
1) Let C be a (n-2)-cone in an n-dimensional space, A be a curve which

contains the apex V . We denote by AC the set of points Q of A for which LQ
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the linear orthogonal (n-1)-dimensional subspace to A in Q meets C. Denote
by C(LQ) the intersection of C and LQ.
Let ρQ be a continuous translation and/or a continuous rotation of C(LQ)
around Q in the subpsace LQ giving birth to the trace TC(LQ) of C(LQ) in
that subspace. We suppose that ρQ is a continuous function of Q. From the
geometric point of view, we can also suppose that each local transformation
changes the local sizes.

The union of these traces TC(LQ) when Q moves continuously on AC is a
(n-1)-cone.

Here is a trivial example where ρQ is a 360◦ rotation, A is a vertical line.
Starting with an half smiling cone, we may get for instance the following hollow
2-cone. We might call the corresponding full 2-cone the �bell�, or the �hat�.

The bell
Figure 33

2) More generally, A does not contain V . Then we do not get a cone in
general, but the coat of a moutain.

A fairly simple example is the Whitney umbrella that can be obtained by
translating a Chinese hat, without any metrical transformation of its size.

From the metrical (geometrical) point of view, the presence of local sym-
metries of the basis is of some interest. One can impose in particular that the
vectorfield which acts on the transversal sections C(LQ) keeps on the associated
group of symmetries. Then we get a priviledged axis.

5.2.3 Full 2-cones, the 3-ball and the 2-sphere
Let us consider a family of full linear 2-cones C(t) like full triangles. From

the topological point of view, one can represent them by 2-cones whose basis
are arcs of circles.
Let A(t) the area of the cone C(t). We suppose that the mapping t → A(t)
where t describes the interval [0, 1] is continuous, with A(0) = 0, and A(1) =
A.
Now, in the usual 3-space, let Λ a vertical interval, and S the shape, the flag
defined by a regular conical excresence of the family of C(t) along the handle
Λ.
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Here is (left) a vegetal example of such a shape showing C(1) and Λ, to-
gether with its symmetric (right):

flags with homothetic cones
Figure 34

Let 1(t) and 2(t) be the arms of C(t) and call the sets F (i) = {
⋃
{i(t) | t ∈

[0, 1]} the i-face of S, where i = 1 and 2.

Consider n clones of S, S1, S2, ..., Sn, and their respective faces Fk(i) where
Fk(i) is the i-face of the clone Sk.

Identify their handle to get a flag, then identify the face Fk(2) with the face
Fk+1(1) for k < n− 1, the face Fn(2) with the face F1(1).

Topologically, the result is a 3-ball whose boundary is the 2-sphere : one
may taste an equivalent final following conclusion.

Figure 35

6 Singularities again

6.1 Creation

The pinching process [1] is a standard process to create singular sub-domains.
The creation of a singular point can be practically worked out in the following
way. Choose the location in the object close to which the singular point should
appear. Consider a small ball containing this location and a point V inside the
ball but out of the object. The intersection of the ball with the object will be
the basis of a hollow cone with apex V such that the object and the cone share
the same tangent space along the basis. Attach the cone to the object and cut
off the interior of the basis.

Note that when the object is locally convex, the resulting singularity V can
be bubbling or anti-bubbling according to its position with respect to the object.
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A physical equivalent way to create a singularity consists in choosing a point
V on the object and to draw out the object along curve through V . Such
a process has been for instance used by Philippe Charbonneau to create the
following sculpture:

Biconique 2 by Philippe Charbonneau
Figure 36

Here, the object is a curve, the knot called the trefoil which bounds a Möbius
band. The curve was drawn out at two points V and V’ which have been fixed
up on a vertical rigid axis.

More complex sculptures could be similarly worked out with any other reg-
ular torus knot.

6.2 Suppression

6.2.1 The first natural process is to smooth the object by suppressing locally
the cone and substituing to it a small half ball or half sphere. We may call this
process the rounding of the singularity.

I shall show a very few reasonably good home made photos first for the
pleasure of the eyes.
The first group of photos illustrate the internal symmetry of flowers and the
layout of their petals viewed as cones. Indeed, it seems to me that the main
symmetries of the floral world are of order : 2, 2 + 2, 4, 3, 3 + 2, 5. 2 + 2 means
a superposition of orthogonal symmetries of ordre 2. Similarly, 2 + 3 means a
superposition of a symmetry of order 2 and a symmetry of order 3. Frequently,
the order of these fundamental symmetries is multiplied by an even number.
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Figure 37

The second group of photos illustrates the rounding of the singular parts of
some polyhedra which appear as buds of flowers.
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Here, it is interesting to notice that the visible part of the complete
flower itself (right) has the shape of a half octahedron.

The bud of a poppy and its flower
Figure 38
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The bud of a peony

Figure 39

6.2.2 Paragraph 4.7 introduced a notion of foliation of a cone. This notion
does not fit exactly what can be observed in nature. A better approach consists
in introducing a notion of multiple protecting covering - richer than the notion
of (simple) covering commonly used in mathematics.

For instance, let us consider the full 2-cone we have met in 3.2.3 (Figure 41,
left), and its boundary, its associated complete hollow 1-cone, represented by
the red triangle (Figure 40, middle). It is viewed as a simple covering of the
full triangle. Since it has no thickness, we may cover the full triangle by any
number n of replica of the hollow cone: they constitute a multiple covering of
the full cone.

Figure 40

Consider now a tetrahedron as a cone C with apex V , whose basis is the
previous full triangle. Its coat Cc is a hollow 2-cone whose basis is the red
triangle of Figure 42. Consider now an other hollow 2-cone with the same apex
V , but whose basis is the blue triangle.
The singular points of the red basis of the given 2-cone are contained in the
regular part of the blue basis of the second 2-cone. We shall call that second
cone a protecting covering of the first one.
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Figure 41

Indeed the second cone is �protecting� the singular lines of the first cone.

If you iterate the process of protection of the successive 2-cones, together
with a rounding of the whole construction, you get something similar to the bud
of a flower caracterized by an appropriate foliation.

As an example, we may choose the bud of a rose - the rose might have a
3 + 2 symmetry.

Figure 42

7 Exfoliations

In order to create new shapes, we have intensively been using attachments along
singular parts. If we think in physical terms, giving some thickness to a 1, 2
... n-dimensional domain, the k-one will be understood as less strong than the
(k+p) one. Thus a singular part of an object belongs in some sense to the weak
part, to the most fragile part of an object.
Then the attachment of two objects along some of their singular part may show
some weakness, especially if the quality of the glue or of the soldering is not the
best.
That is a reason which encourages the creation of protecting coverings.

We shall call exfoliation the inverse process of creation. As it is working in
the floral universe, it consists in disconnecting an object along its singular parts,
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through local processes of separation, of detachment.

From the metrical and physical point of view, the process of attachment is
not brutal in general, but is progressive, and can be numerically controlled in
time according to the point of the singular part which is reached. The opera-
tion of exfoliation has similar properties, but can be run faster than the one of
creation.

Since an apex is a 0-dimensional domain, exfoliation generically begins with
such singular points. If we imagine the presence of a multicoloured cloud of
1-cones, exfoliation, a big-bang coming with the vanishing of the apices gives
rise to an other cloud of arms and anti-arms.

Exfoliations of polyhedra give rise to many new beautiful flowers.

8 Conclusion

The topological theory which has been presented here is fairly simple, even per-
haps naive. But giving also rise to a large amount of mathematical questions,
its fecondity is rather a proof of its interest. In higher dimensions, our usual
mathematical tools are unable to classify singularities. We may hope that the
topological approach will permit us to go further. In other respects, the con-
struction of an algebraic topology based on cones is more complex than the
classical one, but the fact that a non linear triangle remains the assembly of
three 1-cones, that several ways to attach cones can be used, suggests that a
finer and a richer theory could be developed. It is worth noticing that a clas-
sification of cones seems to be impossible since it includes the classification of
the basis of cones, which can be cones themsleves. That is why I have choosen,
after the title of this article, to symbolize this theory of cones by the drawing
of the snake which bites its tail.

From a pedagogical point of view, the theory is very pleasant: it is accessi-
ble to everybody, permitting the creation of a multitude of 2D and 3D cones,
shapes and compositions, using modelling clay, strings, scissors, paper, pieces
of cardboard, glue, and a brush. Later, software permitting, we may be able to
make these constructions on computers. Using the set of these tools, an imag-
inative artist could have already created all the objects that have been shown
on Figure 26 for example.
Via the concepts on which it stands, via the creations it allows, the theory
stands in some sense at the junction of mathematics and art. Through the
constructions he imagines and shapes, born of his hands, the child, the budding
artist will express his dreams, and perhaps will reveal talents which will one day
be expressed in an artistic activity, one of the most original of man, whether
engraved in matter, or simpler and purer worked by the mind.
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