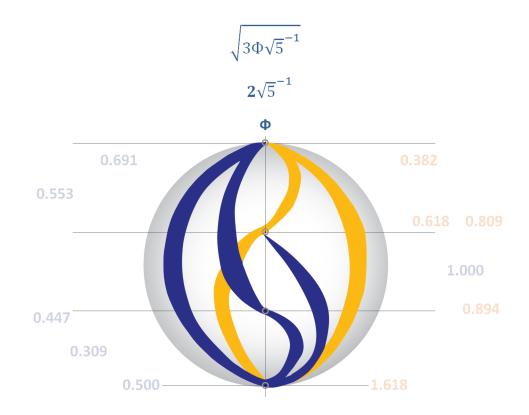
МОСИФ ШЕВЕЛЕВ

ЕДИНИЦЫ ЕСТЕСТВЕННОЙ ГЕОМЕТРИИ



Автор благодарит губернатора Костромской области Ситникова Сергея Константиновича, сенатора Совета Федерации Журавлева Николая Андреевича, директора НИИТИАГ РААСН Бондаренко Игоря Андреевича и всех, кто содействовал его научным исследованиям и их публикации.

РИДИТОННА

Проблема образования формы в живой природе - наименее изученная область науки о жизни и восприятии: наука о единстве и целостности пространственных форм не имеет пристанища. А не имеет она его потому, что понятие "форма" не вмещается в какой-либо отдельный блок естествознания: астрофизику, физику микромира, физиологию, генетику или теорию искусства. Она всеобъемлюща - и потому "ничья". В архитектуре, ваянии, живописи лицо гармонии туманно и неопределенно. Между тем это строгая наука. Это ветвь геометрии и теории чисел, в которой объектом исследования являются не сами геометрические тела, фигуры и числа. Они только придают наблюдениям и выводам наглядный вид. Гармония исследует размерную структуру вещей и живых существ, ритмы членений, и, также, метаморфозы бионических кривых: это наука о многообразии форм реального мира, имеющем единый метафизической исток. В книге представлены общие принципы становления форм и структур в живой природе и искусстве. Перед читателем - особая область точных наук, дорогу к которой находит и определяет искусство, а проясняет и питает естествознание. Это естественная геометрия. Симметрия, принцип двойственности "комплементарное противоположно", господствующие в природе и замеченные физикой и биологией, здесь обобщены и соединены алгоритмом симметрии пар -преобразованием теоремы Пифагора в Золотое сечение. Такой взгляд на старые великие истины дал ключ к моделированию форм живой природы и практическому дизайну. Гармония заговорила на языке геометрии и целых чисел, которые названы натуральными (природными) не случайно. Язык гармонии становится понятен, если в Единице (1), представляющей на язьже абстракций реальные единицы бытия, увидеть структуру: простейшую, но уже обладающую свойствами симметрии и безграничными возможностями комбинаторики.

Перед Вами - итог полувековых исследований автора. Работа разделена на три части Первая посвящена алгоритмам формообразования и константам естественной геометрии. Вторая моделирует элементарные формы живой природы и' членение пространства (комбинаторику золотых многогранников). Третья устанавливает гамму пропорций, применимую в архитектуре и дизайне и показывает , как вечные законы гармонии работают в искусстве архитектуры.

Иосиф Шевелев

Единицы естественной геометрии

УДК 511.2:72.03(09) ББК 22.13:85.110.5 Ш371

Шевелев И. Ш.

Ш371 Единицы естественной геометрии / Кострома: ДиАр, 2015. – 104 стр.: ил.

ISBN 978-5-93645-056-3

Перед Вами – итог полувековых исследований автора. Работа разделена на три части. Первая посвящена алгоритмам формообразования и константам естественной геометрии. Вторая моделирует элементарные формы живой природы и членение пространства (комбинаторику золотых многогранников). Третья устанавливает гамму пропорций, применимую в архитектуре и дизайне и показывает, как вечные законы гармонии работают в искусстве архитектуры.

ББК 22.13:85.110.5

[©] Иосиф Шевелев, 2015

[©] С. В. Курбатов, перевод

Часть 1

ЕДИНИЦЫ ЕСТЕСТВЕННОЙ ГЕОМЕТРИИ.

1 Естественная геометрия — ключ к законам гармонии. Стремление перейти от геометрии, изобретенной разумом человека, к геометрии, адекватно представляющей формообразование в природе и эффективной в творчестве опирается на соблюдение трех условий. 1/ мир структурен, следовательно, структурно число. 2/ мир двойственен, значит, двойственны числа и двойственна точка-сфера; 3/ Взаимодействие элементарных микрочастиц в физике (энергия) подчинено принципу "комплементарное противоположно" 1. На языке чисел и геометрии "противоположное" условимся понимать как "**несоизмеримое".**

АиΩ.

2 Предельно простое должно *изначально* нести в себе исток возникновения сложного. Иначе откуда бы возникла сложность реального мира? Если допустить, что числа "1" нет, то символы 3, 7 и т.п. лишены смысла. **Чисел всегда два**! Число — структура. Но мало это подразумевать — это следует **обозначить**. Условимся именовать целые числа числами α . И присвоим им второе имя, назвав их также "числами ω ". Так мы обнажим структуру числа — представим целое число как уравнение.

$$\omega = \frac{\alpha}{1}$$
 – Триединство (1)

Такое понимание целого числа обладает глубиной. Оно выражает соизмерение, взаимосвязь (–). Это шаг к универсальной единице – абстракции, рисующей метаморфозы форм реального мира. Существование числа $\omega^{+1} = \frac{\alpha}{1}$ утверждает существование обратного числа $\omega^{-1} = \frac{1}{\alpha}$. Объединение обратных чисел, во-первых, в две пары, разность (-) $\omega = \frac{\alpha}{1} - \frac{1}{\alpha}$ и сумму (+) $\omega = \frac{\alpha}{1} + \frac{1}{\alpha}$, и, во-вторых, в две пары пар (2), имеет следствием закон удвоений и раздвоений. Если пару пар соединяет вычитание — удваивается обратное число $\frac{1}{\alpha}$: если их соединяет сложение, удваивается прямое число $\frac{\alpha}{1}$:

$$\left(\frac{\alpha}{1} - \frac{1}{\alpha}\right) - \left(\frac{\alpha}{1} + \frac{1}{\alpha}\right) = 2 \propto^{-1}; \left(\frac{\alpha}{1} - \frac{1}{\alpha}\right) + \left(\frac{\alpha}{1} + \frac{1}{\alpha}\right) = 2 \propto^{+1}.$$
 (2)

Но это не банальное удвоение ($\propto + \propto = 2 \propto$). Бинар разности (-) ω меньше истока на обратное число; бинар суммы (+) ω больше истока на то же число! Перед нами алгоритм раздвоений и удвоений, сохранение и изменение вместе,— уникальный и единственный в биологии механизм метаморфоз, репликация, творческий инструмент поиска новых структур, приспособление живых систем к происходящим переменам.

ВТОРАЯ ТЕОРЕМА ПИФАГОРА (ВТП) И ЗОЛОТОЕ СЕЧЕНИЕ.

3 Две сферы могут быть совмещены в одну, сохранив в полноте, каждая, свою индивидуальность. Начертим две окружности *AB*, вложенные друг в друга: одна образована точками W, вторая – точками V. Гипотенуза треугольников *AWB* и *AVB* одна, а треугольников безгранично много. Двойственность, творит себя сама, объединяя все становящееся быть в нечто целое. 1/ из *двух квадратов* возник *один*; из *одного два*. 2/

٠

¹ сформулировано Нильсом Бором

удвоение делает квадрат двойным квадратом; сечение пополам, параллельное стороне рассекает квадрат на два двойные квадрата; 3/ второе сечение делит двойной квадрат по диагонали на два прямоугольных треугольника, дважды открывая Золотое сечение. Вопервых, соизмерением стороны 2 с диагональю, увеличенной на малую сторону 1 и, вовторых, соизмерением ее с диагональю, уменьшенной на малую сторону 1.

Удвоенная теорема Пифагора позволила выразить **Триединство** одним символом. Это единица, одновременно число и визуальный образ, сфера. Общими точками двух вложенных друг в друга сфер W и V являются два полюса, A и B (рис. 2.1,2). Ни одна иная точка сферы V не может совпасть с какой-либо точкой сферы W. Сферы W и V вложены друг в друга, "проникают друг друга". Две сферы есть одна сфера, сфера—третье, целое (рис. 1, 1.5). Условие: катеты треугольников W (отрезки **A, B**) и треугольников V (отрезки **а, b**) несоизмеримы — ключ к алгоритму Ф, коду самовоспроизведения Жизни, закону "из одного два, из двух одно", "из одного все из всего одно".

$$\Phi^{+1} = (\sqrt{5} + 1):2 = 2: (\sqrt{5} - 1) = 1,6180339.. \ \Phi^{-1} = (\sqrt{5} - 1):2 = 2: (\sqrt{5} + 1) = 0,6180339..$$

4 Единица ω представлена в образе сферы, в которой расстояние между полюсами – отрезок AB — изменяет величину. Когда концы диаметра, полюса A,B совмещены, это Точка, одна, но вместе с тем их d ве. Мы представили это, изобразив точки сферы W на левой половине чертежа, а точки сферы V — справа. Поскольку сфер две, теорема Пифагора $\mathbf{y} d$ воен \mathbf{a} . Связь точек $\mathbf{W}_{\mathbf{n}}$ с полюсами \mathbf{a} , \mathbf{b} (множество пар чисел \mathbf{a} , \mathbf{b}) описывает уравнение $\mathbf{A}^2 + \mathbf{B}^2 = \mathbf{c}^2$. Связь точек $\mathbf{V}_{\mathbf{n}}$ с полюсами \mathbf{a} , \mathbf{b} (множество пар чисел \mathbf{a} , \mathbf{b} , с числами \mathbf{b} , в несоизмеримыми) описывает уравнение $\mathbf{c}^2 = a^2 + b^2$. Уравнение Пифагора удвоилось, обрело симметричную форму. Оно подобно парящей птице, расправившей два крыла

$$A^2 + B^2 = c^2 = a^2 + b^2$$
. (3)

Перенесем число ${\bf a}^2$ уравнения ${\bf A}^2+{\bf B}^2=a^2+b^2$ из правой части в левую, а число ${\bf B}^2-$ из левой части в правую (поменяем их местами). Перестановка (${\bf a}^2\rightleftarrows {\bf B}^2$) — преобразовала удвоенную (Вторую) теорему Пифагора в четырехбуквенный код,— в дальнейшем, "уравнение симметрии пар"

$$A^2 - a^2 = b^2 - B^2 = (A + a) \times (A - a) = (b + B) \times (b - B)$$
, откуда
$$\frac{A + a}{b + B} = \mathbf{N} = \frac{b - B}{A - a}$$
 (4)

В уникальном случае, когда **N=Ф** уравнение симметрии пар безгранично комбинаторно и отвечает всем требованиям "Преамбулы". Удвоение (числа 1 и 2) и прямой угол создали диагональ двойного квадрата, равную $\sqrt{5}$. Отождествление сферы с числом **Ф** (Золотое сечение) происходит, когда сферу **W**_n дополняет до целого сфера **V**_n, выполненная числами, **целыми по основанию** $\sqrt{5}$. Сплав двойственности и пятеричной симметрии создан условием **a**= $\propto \sqrt{5}$, **b**= $\beta\sqrt{5}$.

$$\boldsymbol{\omega} = \frac{A + \alpha \sqrt{5}}{\beta \sqrt{5} + B} = \boldsymbol{\Phi} = \frac{\beta \sqrt{5} - B}{A - \alpha \sqrt{5}}.$$
 (5)

Здесь
$$\Phi^{+1} = \left[\frac{\alpha\sqrt{5} + A}{B + \beta\sqrt{5}} \right] = \left[\frac{\gamma\sqrt{5} + C}{D + \delta\sqrt{5}}\right] = \left[\frac{\rho - \delta\sqrt{5}}{D + \delta\sqrt{5}}\right] = 0$$
 и т.д.

Перестановка $a^2 \subseteq B^2$ в корне изменила смысл уравнения *Пифагора*. До перестановки это геометрия: вершины прямых углов, точки **W** и **V** создают сферическую поверхность. После перестановки это уравнение Симметрии пар (3), символ энергетического события.

5 Выражена не форма сферы, а ее суть. Теперь уравнение описывает уже не сложение катетов в точках W и V, а взаимодействие сил, сосредоточенных в двух полярных, генетически тождественных, но противоположных точках, полюсах А,В. Сопоставлены множество пар чисел, сомкнутое в полюсе A, (A $\pm \alpha \sqrt{5}$) и множество пар чисел ($\beta\sqrt{5}$ \pm B), сомкнутое в полюсе B. Между всеми парами установлено устойчивое (золотое) динамическое равновесие. (A+ $\propto \sqrt{5}$): ($\beta \sqrt{5}$ + B) = Φ

Возможно это при соблюдении условия: взаимосвязи А≒В и а≒b запрещены; разрешено взаимодействие пар $A \propto \sqrt{5} \rightleftharpoons B$, $\beta \sqrt{5}$. За абстрактным представлением о бесконечном множестве двойных сфер W, V (вторая теорема Пифагора) стоит взаимодействии двух безгранично мощных потенций, сосредоточенных мгновенно и необъяснимо в полюсах А и В.

Возник метафизический образ Творческой силы, присутствующей везде одновременно. Воцарилась Единица $\omega = \Phi$ (рис. 2.1), первая константа естественной геометрии.

$$\Phi^{+1} = \frac{1}{2} (\sqrt{5} + 1) = 1,6180339....; \Phi^{-1} = \frac{1}{2} (\sqrt{5} - 1) = 0,6180339...$$

Роль чисел A,B, α , β могут играть в уравнении любые числа HP. Но только появление пятеричной симметрии придало алгоритму роль формообразующего закона природы. Числа соединяются в пары; пары объединяются в пары пар (из одного два, из двух одно) уникальным образом: правило удвоений-дихотомий формирует uструктуру как целое, и ее детали. В уравнении (5) каждое из чисел числителя (A, \propto) образовано *из половин* чисел знаменателя (β , B); каждое из чисел знаменателя (β , B) образовано из половин чисел числителя (A, \propto) .

$$\alpha = \frac{1}{2\beta} + \frac{1}{2\beta}; \qquad \beta = \frac{1}{2}A - \frac{1}{2\alpha};
\beta = \frac{1}{2}A - \frac{1}{2}$$

Раздвоенные единицы, соединяясь в пары, дают начало бытию двух новых Единиц.
$$1 = + \frac{\phi}{1} - \frac{1}{\phi}; \sqrt{5} = + \frac{\phi}{1} + \frac{1}{\phi}. \Phi^{+1} = + \frac{1}{2} \mathbf{1} + \frac{1}{2} \sqrt{5}; \Phi^{-1} = -\frac{1}{2} \mathbf{1} + \frac{1}{2} \sqrt{5}. \tag{7}$$

Возникло уникальное кольцо, в котором причины являются следствиями следствий, а следствия – причинами причин:

$$\Phi = f(1,\sqrt{5}); 1 = f(\Phi); \sqrt{5} = f(\Phi)$$
 (8)

НОВОЕ ПОНИМАНИЕ РЯДА ФИББОНАЧИ – ЛЮКА.

Появилась возможность расшифровать структуры (2) и (9) - ключевые в 6 естественной геометрии. Мы начали с того, что "аддитивность" дарит естественной геометрии алгоритм репликаций. Мультипликативность позволяет представить Единицу

² При этом соблюдается правило: оба числа числителя должны быть либо четные, либо оба нечетные. Так же и в знаменателе.

более высокого уровня. Она рисует ритм перемен, кольцо взаимосвязей становления целого, Единицу ω . Пары пар — разности и суммы обратных чисел образуют удвоенные пары пар, которые объединяются в звенья из четырех элементов, которые последовательно *умножаются сами на себя*. Возникла цепь, в которой показатель степени n каждого элемента в очередном звене закономерно растет от n=0 к n=1, n=2, n=3 и т.д.; $n\to\infty$.

$$(-)\boldsymbol{\omega}_{n} = \left[\frac{\sigma}{1}\right]^{n} - \left[\frac{1}{\sigma}\right]^{n}; (+)\boldsymbol{\omega}_{n} = \left[\frac{\sigma}{1}\right]^{n} + \left[\frac{1}{\sigma}\right]^{n}$$
 (9)

Таблица 1. Алгоритм репродуцирования биоструктур.

РЯД L (ЛЮКА, модуль 1), и РЯД F (ФИБОНАЧЧИ, модуль $\sqrt{5}$), ОБРАЗОВАЛИ "ДВОЙНУЮ СПИРАЛЬ", ПОМЕСТИЛИ В СЕБЕ ДРУГ ДРУГА.

Показа		Левая ветвь		Правая вет	ВЬ
тель степени n	\propto^n	Разность $\left[\frac{\alpha}{1}\right]^n - \left[\frac{1}{\alpha}\right]^n$		Сумма (+	$\left[\frac{\alpha}{1}\right]^n + \left[\frac{1}{\alpha}\right]^n$
0		$\left[\frac{\alpha}{1}\right]^0 - \left[\frac{1}{\alpha}\right]^0 = 0$	ο θ	N 2	$\left[\frac{\alpha}{1}\right]^0 + \left[\frac{1}{\alpha}\right]^0 = 2.000000$
1		$\left[\frac{\alpha}{1}\right]^1 - \left[\frac{1}{\alpha}\right]^1 = 1.000000$	1	$\bigcup_{\theta} 1$	$\left[\frac{\alpha}{1}\right]^1 + \left[\frac{1}{\alpha}\right]^1 = 2.236068$
2		$\left[\frac{\alpha}{1}\right]^2 - \left[\frac{1}{\alpha}\right]^2 = 2.236068$	1 0	N 3	$\left[\frac{\alpha}{1}\right]^2 + \left[\frac{1}{\alpha}\right]^2 = 3.000000$
3		$\left[\frac{\alpha}{1}\right]^3 - \left[\frac{1}{\alpha}\right]^3 = 4.000000$	N 4	θ 2	$\left[\frac{\alpha}{1}\right]^3 + \left[\frac{1}{\alpha}\right]^3 = 4.472136$
4		$\left[\frac{\alpha}{1}\right]^4 - \left[\frac{1}{\alpha}\right]^4 = 6.708204$	3 0	N 7	$\left[\frac{\alpha}{1}\right]^4 + \left[\frac{1}{\alpha}\right]^4 = 7.000000$
5		$\left[\frac{\alpha}{1}\right]^5 - \left[\frac{1}{\alpha}\right]^5 = 11.00000$	N 11	θ 5	$\left[\frac{\alpha}{1}\right]^5 + \left[\frac{1}{\alpha}\right]^5 = 11.180339$
6		$\left[\frac{\alpha}{1}\right]^6 - \left[\frac{1}{\alpha}\right]^6 = 17.88854$	8 0	N 18	$\left[\frac{\alpha}{1}\right]^6 + \left[\frac{1}{\alpha}\right]^6 = 18.000000$
	Φ ⁷ =29.034443	$\left[\frac{\alpha}{1}\right]^7 - \left[\frac{1}{\alpha}\right]^7 = 29.00000$	N 29	θ 13	$\left[\frac{\alpha}{1}\right]^7 + \left[\frac{1}{\alpha}\right]^7 = 29.068$ 883

и т.д.

Появилось Целое, в котором две последовательности — комплементарно противоположные целые числа — соединяясь, образуют "двойную спираль".

Четные правые и нечетные левые "единицы" этой последовательности образуют L-ветвь структуры. Это аддитивный ряд чисел HP. Начинают ряд числа **2** и **1**.

2, 1, 3, 4, 7, 11, 18, 29, 47,и т.д. Это числа широко известного в биологии натурального ряда Люка, в том именно виде, к которому все привыкли.

Вторую ветвь, комплементарную ветви Люка составили четные левые и нечетные правые числа этой же последовательности. Это F-ветвь, аддитивный ряд Фибоначчи. Но ряду "натуральных чисел" он не принадлежит. Мантиссы составляющих ее чисел бесконечные десятичные дроби.

И, тем не менее, это числа *целые* — но целые по основанию $\sqrt{5}$, с числом 1 несоизмеримому, что и требует принцип комплементарности!

Таким образом, идея обратных чисел (триединство) показывает, что рядов, иллюстрирующих механизм репродуцирования жизни не два, а один раздвоенный. Две ветви ряда Фибоначчи-Люка вложены друг в друга. Две его "параллельные строки" закручены в двойную "золотую спираль". Числа, целые по модулю 1, и числа, целые по модулю $\sqrt{5}$, соединены попарно. В каждом звене ("витке спирали") – комплементарнопротивоположная пара. Так же устроены фундаментальные структуры биологии.

То, что отношение смежных чисел ряда Фибоначчи (также и ряда Люка) стремится к числу Φ , общеизвестно. Но числа Люка и Фибоначчи, представляющие одно целое, $(\cdot,+)$ $\mathbf{\omega}_{\mathrm{n}} = \left[\frac{\Phi}{1}\right]^n \mp \left[\frac{1}{\Phi}\right]^n$ - это золотые числа с абсолютной точностью. Это не только предел рядов Люка и Фибоначчи, как это принято считать.

Поразительна красота этого двойного алгоритма, близость его структуры к структуре молекулы ДНК, в биологии не случайной, а главной, ответственной за соблюдение подобия потомственных единиц единицам начального прототипа. Не в этом ли метафизический смысл Золотого сечения? И можно ли, строго следуя математической логике, извлечь число Φ из самой идеи *целостности*, которая объединяет и закон пространственной обособленности единиц бытия и единство частей и целого каждой из Единиц законом гармонии – алгоритмами структурообразования?

ЦЕЛОСТНОСТЬ

7 Допустим, что существует нечто одно – число ω . Бесконечно себя копируя и умножаясь само на себя, оно соединяет все, что создается этим процессом, во всеобъемлющее целое, именуемое числом 1.

$$\sum_{n=1}^{\infty} \omega^{(+n)} = 1, \sum_{n=1}^{\infty} \omega^{(-n)} = 1$$
 (10)

Это и есть алгоритм Целостности: жизнь и движение. Структура числа 1 обнажена. Основа и корень числа 1 – раздвоение и удвоение: числа ω равны $^{1}/_{2}$ и $^{2}/_{1}$.

если
$$\sum_{n=1}^{\infty} \omega^{(+n)} = 1$$
, то $\omega = \frac{1}{2}$ (11.1), если $\sum_{n=1}^{\infty} \omega^{(-n)} = 1$, то $\omega = \frac{2}{1}$ (11.2).

Породив раздвоение, уравнение (10) раздваивается. Возникают две его ветви: уравнение (12) и уравнение (13). Их появление – символ разделения Мира на мир кристаллов и мир живых организмов.

Цепь чисел ω , занимавших в уравнении (10) *четные места*, создала уравнение, корнем которого служит число $\sqrt{2}^{\pm 1}$ (неорганический мир): если $\sum_{n=1}^{\infty} \omega^{(+2n)} = 1$, то $\omega = \frac{1}{\sqrt{2}}$ (12.1),

если
$$\sum_{n=1}^{\infty} \omega^{(+2n)} = 1$$
, то $\omega = \frac{1}{\sqrt{2}}$ (12.1),

если
$$\sum_{n=1}^{\infty} \omega^{(-2n)} = 1$$
, то $\omega = \frac{\sqrt{2}}{1}$ (12.2)

Цепь чисел, занимавших в уравнении (6) *нечетные места*, создала уравнение, корнем которого служит число Золотого сечения Φ , неизменно присутствующее в структурах, ритмах и формах живой природы:

если
$$\sum_{n=1}^{\infty} \omega^{+(2n-1)} = 1$$
 то $\omega = \Phi^{(-1)}$, (13.1)

если
$$\sum_{n=1}^{\infty} \omega^{-(2n-1)} = 1$$
 то $\omega = \Phi^{(+1)}$. (13.2)

Поразительные емкость и полнота метаморфоз числа ω имеют причину. Она — в изначальном свойстве бинара Φ , который есть $mpue \partial u h cm bo$.

ВИЗУАЛЬНЫЙ ОБРАЗ ЕДИНИЦЫ Ω И ВТОРАЯ КОНСТАНТА

8 Сферу можно мыслить Точкой, замкнутым пространством-атомом, планетой, солнцем, ядром живой клетки, экспансией расширяющейся Вселенной. *Сфера* несет в себе правила формообразования, которыми пользуется природа. Представим бинарную сферу с осью AB. На чертеже это окружность. Все, что относится к сфере W будем рисовать слева от вертикальной оси AB; все, что относится к сфере V — справа. Сферой W представлены отношения чисел натурального ряда, (модуль 1,) сферой V — отношения чисел, целых по модулю $\theta = \sqrt{5}$.

Продолжим путь дихотомий.

Разделим левую полуокружность AB в точке W_0 на ∂se части так, чтобы отрезки W_0A и W_0B соединило удвоение: $W_0A = A=1$, $W_0B=2$. Согласно теореме Пифагора $1^2+2^2=\left(\sqrt{5}\right)^2$ диаметр $AB=\sqrt{5}$. Из подобия треугольников $A\,W_0B$ и φrB очевидно, что расстояние от центра φ до отрезка AB равно половине исходного отрезка W_0A , $r\varphi=\frac{1}{2}$. Катет $W_0B=2$ разделен точкой \mathbf{r} пополам. Налицо цепь дихотомий и ее важные следствия.

- 1/ Появление точки r позволяет касательной W_0B в сферу $AB = \sqrt{5}$ вписать сферу ab = 1: число сфер удвоилось (puc. 2.1).
- 2/ Дихотомия катета W_0B , выполненная точкой r (W_0B :2 = 1), привела к появлению точки W_1 и, тем самым, к *трихотомии* катета W_1A (puc.2.2): окружность ab =1 рассекла отрезок AW_1 в точках r_0 и r_1 на mpu равные части, равные, каждая, числу $\sqrt{2}^{-1}$.

$$W_1B = r_1A = r_0r_1 = W_1r_0 = \sqrt{2}^{-1}$$
;

Точка W_1 установила связь чисел 1-2- $\sqrt{2}$ -3- $\sqrt{5}$, в триединстве W_1B : $W_1A=\mathbf{1}$: 3;

3/ *Число сфер утроилось*. Три дихотомии вложили одну в другую три сферы. Их диаметры взаимосвязаны как числа

$$AB: ab: mn = \sqrt{5}: 1: (\sqrt{2})^{-1}.$$
 (14)

Центральным ядром этой троичной структуры является сфера $mn = 2^{-1/2}$. Число $\sqrt{2}$ играет важнейшую роль в мире неорганических форм природы (кристаллов) и в искусстве. В сферу AB вписано безграничное множество сфер, поскольку точки окружности W,V соединены с полюсами безграничным множеством отношений. Мы можем мысленно вернуть их все в Точку начала, представить окружность $AB = \sqrt{5}$ и как исчезающе-малое нечто – точку, и как расширяющуюся Вселенную (0 \leq $AB \rightarrow \infty$).

Сфера содержит все мыслимые варианты выполнения алгоритма симметрии пар. Переход от структуры к структуре, от звена к звену графически представляет движение отрезка WV, соединяющего комплементарные точки бинарной сферы W и V.

Их согласованное движение открывает два безграничные множества чисел: числа N, т.е. целые числа HP, и им комплементарные (несоизмеримые 1) целые числа второго рода (назовем их числами θ). В целом, это образ экспансии (рис. 3.2-3). Здесь каждой паре пар целых чисел N отвечает пара пар чисел θ , целых по иррациональному модулю, и каждой паре пар чисел отвечает своя сфера. Сфера Ω есть образ движения: свернутое в Точку начала пространство-время.

Вторая константа естественной геометрии

9 Рост целых чисел N и θ , метаморфозы геометрических тел — все это зримо представлено на плоскости движением отрезка $\mathbf{W}_n\mathbf{V}_n$, который, перемещаясь, рассекает окружность в отношении золотого сечения. Отрезок WV скользит концами W и V по окружности AB. Если точка W движется влево от полюса A к полюсу B, то V движется, напротив, вправо от полюса B к A. Точки W, V не сближаются и не удаляются друг от друга: таким мы видим звездное небо. Расстояние WV в отношении диаметра AB неизменно:

$$\mathbf{W_1V_1}$$
= 2ab = $\mathbf{2/\sqrt{5}}$ \mathbf{AB} = 0,8944272 AB . (12)
Это вторая константа естественной геометрии (рис. 3.2,3).

Представим Вторую константу как пространственный образ. Отрезок WV огибает сферу диаметром ab =1 (на чертежах сферы представлены окружностью). Каждое новое положение отрезка WV изменяет угол пересечения его с осью AB, изменяя числовой образ Золотого сечения. Возникают новые и новые УСП,— пары пар целых чисел; УСП наращивают номера (Приложение, таблица 3).

Каждое новое уравнение симметрии пар — это *три пары* конических пирамид, построенных пятью отрезками. Два отрезка — катеты, заданные целыми числами натурального ряда (N=1); два — катеты, заданные числами, целыми по основанию $\theta = \sqrt{5}$. Пятый отрезок — он соединяет вершины прямых углов \mathbf{W}_n и \mathbf{V}_n (рис. 3 и 4) — константа WV= $2/\sqrt{5}$ AB. Поворот вокруг оси AB на угол 2π этой замкнутой структуры одним этим действием вписывает в сферу две "летающие тарелки", большую и малую, сомкнутые в точке "k", общей вершине двух конусов — точке пересечения диагоналей четырехугольника Птолемея. Большая "тарелка" внутри себя несет сферу N = ab=1. Сфера вписана в конус, построенный поворотом константы \mathbf{WV} вокруг оси сферы (рис. 4).

10 Существуют уравнения симметрии пар, для которых вписать в сферу AB сферу ab, пользуясь b второй константой WV не удается. Эту неожиданность следует прояснить.

Равенство, которым теорема Пифагора преобразована в Золотое сечение, имеет левую и правую части. Каждая часть имеет числитель и знаменатель. Метаморфоза: преобразование левой пары в правую состоит в том, что числитель и знаменатель меняются местами и знаки, соединяющие числа, меняются на обратные. Связь комплементарных чисел в пары может быть выражена уравнениями вида $(\frac{+}{+} = \frac{-}{-})$, либо $(\frac{+}{-} = \frac{+}{-})$. В случае первом $(\frac{+}{+} = \frac{-}{-})$ начальная (левая) часть уравнения создана сложением, т.е. так, как это требует теорема Пифагора. А правая часть есть зеркально-антисимметричное отражение левой.

$$\Phi = \frac{A + \propto \sqrt{5}}{\beta \sqrt{5} + B} = \frac{\beta \sqrt{5} - B}{A - \propto \sqrt{5}}.$$
 (5a)

Это правильный алгоритм. Поверхность сферы (точки W,V) задана теоремой Пифагора: части в целое *складываются* (+).

В случае втором, $(\frac{+}{-}=\frac{+}{-})$ картина иная. Она, с позиций бинарности и симметрии, кажется логичной и последовательной. Но закон "комплементарное — противоположно" истолкован по-новому. Знаки внутри каждой части уравнения в числителе (+), в знаменателе (–) противоположны. А знаки левой и правой частей уравнения, числителя и числителя и, также, знаменателя и знаменателя, из противоположных превратились в moждественные:

$$\Phi = \frac{A + \propto \sqrt{5}}{\beta \sqrt{5} - B} = \frac{\beta \sqrt{5} + B}{A - \propto \sqrt{5}}.$$
 (5.b)

Графическое изображение уравнения ($\frac{+}{-} = \frac{+}{-}$) открыло непредвиденное: отрезок WV \neq $2/\sqrt{5}$ AB. Он лишился значения константы. Пропорция УСП = Ф сохранена, но сферу ab=1 отрезок WV не воспроизводит (рис. 6.1-4, УСП 6 -11). Проверка правилом: "каждое из чисел числителя (A, \propto) образовано *из половин* чисел знаменателя (β , B); каждое из чисел знаменателя (β , B) образовано *из половин* чисел числителя (A, \propto) приводит к парадоксу. Положительные числа β оказываются отрицательными, отрицательные – положительными (рис.6,5; приложение, таблица 4):

в УСП -16 получаем
$$\beta$$
 = +17 = -17
в УСП- 17 β = -1 = +1
в УСП- 18 β = -3 = +3, α = +13 = -13, β = +67 = -67, и т.д.

Точка V, представляющая число рода ${\bf \theta}$ (${m eta}$) имеет двойника, точку V'. Появилось на территории чисел N число, относящееся к множеству ${\bf \theta}$ – число ${m eta}$, зеркально симметричное относительно оси AB (рисунки 6.1-4). Оно воспроизвело сферу ${\bf ab}$ =1 вне четырехугольника A WB V, построенного теоремой Пифагора. В другом пространстве. WV' = $2/\sqrt{5}$ AB. Сфере, произведенной мнимой константой, уместно сопоставить мнимую Единицу. Допустить, что ${\bf ab}' = \sqrt{-1}$.

ТРЕТЬЯ КОНСТАНТА ЕСТЕСТВЕННОЙ ГЕОМЕТРИИ

11 Золотое сечение — первая константа естественной геометрии. Первая и вторая константы взаимно обусловили друг друга. **Вторая** константа — отрезок WV= $2/\sqrt{5}$ AB — своим движением вложил внутрь *сферы* AB ядро **ab=1**, расчленив тем самым целое (AB) в отношении Ф. Раздвоение сферы AB на сферы W и V , плюс появление сферы **ab** преобразовали сферу банальную в сферу "золотую".

Возникли четыре триады Золотого сечения

Ab:ba = ba:aA; Ab:ba= ab:bB; Ba:ab=ba:bB; Ba:ab=ba:aA (рис. 2.1, 9.2).

Комбинаторика — мощное средство достижения главной цели природы. Путь поисков структур и форм, благоприятных для выживания. Ключ к комбинаторике — метод удвоений-раздвоений. В решении этой задачи число $\Phi \equiv$ алгоритм симметрии пар не имеет соперников.

Вторая константа соединяет точки W_0 и V_0 ; ею объединены удвоение единицы 1 и число, обратное $\sqrt{5}$. **WV = 2**× $\sqrt{5}^{-1}$ AB = 0.8944272 AB. Точка W_0 связана с полюсами A и B расстояниями 1:2.

Идея бинарности предполагает второе разделение чисел N и θ в пространстве. Числа N и θ можно разделить так, чтобы они расположились не на одной орбите (AB) а на двух разных орбитах, AB и ab. Перенесем точки W (пары чисел N) на сферу ab, а точки V (пары θ) оставим на сфере AB (рис. 7-8). Впрочем, можно сделать наоборот: перенести на сферу ab пары чисел θ , точки V (теперь это точки v), оставив на сфере AB точки N. И соединить комплементарные пары точек $W_n v_n$. Выбор варианта – какие точки перемещать, а какие оставлять на сфере AB – результата не меняет. Существенно то, что числа N отделились от чисел θ , и расстояние $\mathbf{W} \boldsymbol{v}$ в обоих случаях – одна и та же постоянная величина. Соединив точки **W** и v (рис.8.1,2 и 9.2,3), мы нашли третью константу естественной геометрии, отрезок $\mathbf{W}v$. Какова роль третьей константы?

Третья константа 3 W_0v_0 означает, во-первых, утроение числа Φ , (3 Φ), во-12 вторых, появление числа, обратного $\sqrt{5}$ и, в-третьих, погружение числа 5 в корень из корня. $(\sqrt{\sqrt{}})$. 4

$$W_0 v_0 = \sqrt{3\Phi \times \sqrt{5}^{-1}} \text{ ab = 1.4733704... ab};$$
 (16)
 $W_0 v_0 = \sqrt{3\Phi \times (5\sqrt{5})^{-1}} AB = 0,658911...AB$

В сферу ab =1 вписана сфера $\tau \omega$ радиусом $\tau' \omega = \sqrt{\frac{1}{3\Phi \times \sqrt{5}}} = 0.303531...$

Число 5 взято под знак корень из корня, это путь в глубину, не имеющую дна. Каждый шаг здесь – загадка без однозначного ответа, поскольку извлечение корня обратно умножению. Это тайна, ибо $(+) \times (+) = +$; $(-) \times (-) = +$. И рядом с ней мы видим еще один математический факт, заслуживающий внимания.

Принцип удвоений и раздвоений последовательно, шаг за шагом, поместил в сферу диаметром $AB = \sqrt{5}$, еще три сферы, вложенные друг в друга

сферу диаметром ab = 1,

сферу диаметром mn = $\sqrt{2}^{-1}$ сферу диаметром $\pmb{\tau}\pmb{\omega} = 2 \times \sqrt{\left(3 \pmb{\phi} \times \sqrt{5}\right)^{-1}}$. Сфера $\pmb{\tau}\pmb{\omega}$ – ядро структуры Φ .

Оно выделено скольжением Третьей константы $\mathbf{W}v$ = 1,4733704 по окружностям $\mathbf{A}\mathbf{B}$ = $\sqrt{5}$ и *ab=1*. Радиус ядра $\boldsymbol{\varphi} \boldsymbol{\omega} = \left(\sqrt{3\Phi \times \sqrt{5}}\right)^{-1} = 0,3035310$

Связь между константой $\mathbf{W} \mathbf{v}$ и диаметром ядра $\mathbf{\tau} \boldsymbol{\omega}$, вложенного в центр Ф-сферы ее движением, фундаментальна. Дело в том, что понятие число в естественной геометрии означает нераздельное бытие прямых и обратных чисел: "Существование числа $\omega^{+1} = \frac{\alpha}{1}$ означает существование обратного числа $\omega^{-1} = \frac{1}{\alpha}$. Их бытие *одновременно* (см параграф

 $1,4733704 \times \sqrt{5} = 3,2945564... = 0.3035310^{-1}$.

Константа $\mathbf{W}_0 \boldsymbol{v}_0$ (конец события) равна увеличенному в 3Ф раз радиусу ядра (исток события "становление").

³ Рис. 9.3 и 6.2. $\mathbf{W}_0 \boldsymbol{v_0}$ = ? ka = $\Phi^{-1} - \sqrt{5}^{-1}$. k v_0 = ka + 1. $W_0 v_0 = \sqrt{k W_0^2 + k v_0^2} = \sqrt{\frac{3\Phi}{\sqrt{5}}} = \sqrt{2,1708204} = \sqrt{2,1708204}$ 1,4733704...

 $^{^4}$ Доказательство. Рис. 2-3. Из подобия $\mathbf{W_0}$ к и $\varphi \omega' v_{\mathbf{0}_0}$ следует $\varphi \omega' = \sqrt{\left(3\Phi \times \sqrt{5}\right)^{-1}} = 0.3035310..$ $\mathbf{W}_0 \mathbf{v}_0$: $\mathbf{\tau}' \boldsymbol{\omega} = 1,4733704 : 0.3035310 = 3\Phi$.

2). Между тем Третья константа, вписавшая ядро, $\mathbf{W}_0 \boldsymbol{v_0} = \sqrt{3\Phi \times \sqrt{5}}^{-1} = 1,4733704$ и радиус этого ядра $\boldsymbol{\varphi} \boldsymbol{\omega}' = \sqrt{3\Phi \times \sqrt{5}}^{-1} = 0,303531$ связаны — \boldsymbol{uepes} интервал времени $\theta = \sqrt{5}!!$ — как обратные числа. Это математический факт: увеличив третью константу в $\sqrt{5}$ раз, мы находим **число, обратное радиусу ядра** $\boldsymbol{\varphi} \boldsymbol{\omega}'$.

$$3,2945564... = 0.3035310^{-1}$$

Через интервал времени, равный единице $\theta = \sqrt{5}^{\pm 1}$, радиус ядра стал числом, обратным константе $\mathbf{W}_0 \mathbf{v}_0$. При этом:

1/ Произведение радиуса ядра $\pmb{\varphi}\pmb{\omega}$ на константу W ϑ дает величину, обратную $\theta=\sqrt{\bf 5}$

$$\varphi\omega \times \mathbf{W}\vartheta = \sqrt{3\Phi \times \sqrt{5}}^{-1} \times \sqrt{3\Phi \times \sqrt{5}}^{-1} = \sqrt{5}^{-1}$$

0.3035310...×1,4733704 = 0.4472136

2/ Произведение числа "интервал $oldsymbol{ heta}$ " на построившую ядро константу и на радиус ядра,— есть Единица

$$\mathbf{W}\boldsymbol{\vartheta} \times \boldsymbol{\varphi}\boldsymbol{\omega} \times \sqrt{5} = \mathbf{1}$$

3/ Появление Третьей константы устанавливается углом β . Угол 2β = $52^{\circ}37' \times 2$ = $105^{\circ}14'$. Пространство симметрии подобий построено углом $2 \propto =104^{\circ}40'$. Угол внутримолекулярной связи молекулы воды лежит между $104^{\circ}-105^{\circ}$ (рис. 1.2; 7.5). Вода есть жизнь. Так открывается биологический смысл сферы "Единица Φ ".

4/ Разность квадратов второй и третьей константы равна величине 1,3708. В квантовой физике число $\frac{1}{\alpha}$ – *квант энергии*, постоянная тонкой структуры ($\frac{1}{\alpha}$ = 1,3703).

Ритм экспансии (шаг: от сферы $au \omega = 2\sqrt{\left(3\Phi \times \sqrt{5}\right)^{-1}}$ к сфере $ab = \sqrt{1}$; и от сферы $ab = \sqrt{1}$ к сфере $AB = \sqrt{5}$) сопоставлен кванту энергии.

Утроение и увеличение числа Φ в $\theta=\sqrt{5}$ раз есть событие: это изменение структуры пространства, т.е. пространство-время. Математическое моделирование показывает, что Сферы AB, **аb** и третья сфера $\mathbf{\tau}\omega$ - **структуры обратных целых чисел, существующие по разные стороны временного интервала \theta. Именно в этом суть геометрической модели Точки начала: бесчисленное множество сфер, представляющих закон симметрии пар, существует одновременно. Это и представлено Второй теоремой Пифагора.**

12

 $^{^5}$ Доказательство. Рис 15, 2-3. Из подобия $\mathbf{W_0}$ к и $\varphi \omega' v_{\mathbf{0}_0}$ следует $\varphi \omega' = \sqrt{\left(3\Phi \times \sqrt{5}\right)^{-1}} = 0.3035310..$ $\mathbf{W_0} v_0$: $\tau' \omega = 1,4733704 : 0.3035310 = 3\Phi.$ $1,4733704 \times \sqrt{5} = 3,2945564... = 0.3035310^{-1}.$

ПРИЛОЖЕНИЯ APPENDICES

Таблица1. Уравнение симметрии пар.

Симметрия и антисимметрия чисел и знаков

Table 1. Symmetry-of-pairs equation.

Symmetry and antisymmetry of numbers and signs

	Вид симметрии Symmetry type		Φ ⁺¹			Ф ⁻¹				Усл. обознач. Legend	
а	Симметрия чисел Symmetry of numbers	• 🗆			•	• 🗆			•	– число N,кратно 1	
b	Антисимметрия чисел	•			•	•			•	number N, Aliquot of 1	
	Antisymmetry of numbers		•	•			•	•		\square - число $oldsymbol{ heta}$,	
С	Симметрия и анти— симметрия знаков Symmetry and anti- symmetry of signs	+	-			_		+		кратно √5 □ number θ , Aliquot of √5	

Таблица2. Уравнение симметрии пар. Поворотные симметрии

Table 2. Symmetry-of-pairs equation. Rotational symmetries

	Поворотные второго	Условные обозначения Legend				
Единицы	Ед. 1	Ед. 2	Ед.3	Ед.4	• ось	
Units	● Unit 1	● Unit 1 ● Unit 2 ● Unit 3 ● Unit 4		● Unit 4	симметрии.	
Звенья Links	ن	5	C	5	७ ось анти	
Структура					симметрии	
из 2 звеньев 2-link		• axis of symmetry				
structure					ひ axis of antisymmetry	

Таблица3. Пятнадцать примеров решения уравнения симметрии пар (УСП) на сфере. Размеры для построения сферы в масштабе 1=50 мм. (См. рис. 2,3,5-8).

Table 3. Fifteen samples of plotting the symmetry-of-pairs equation (SPE) on a sphere Dimensions for building a sphere to scale: 1= 50 mm (see Figs. 2,3,5-8)

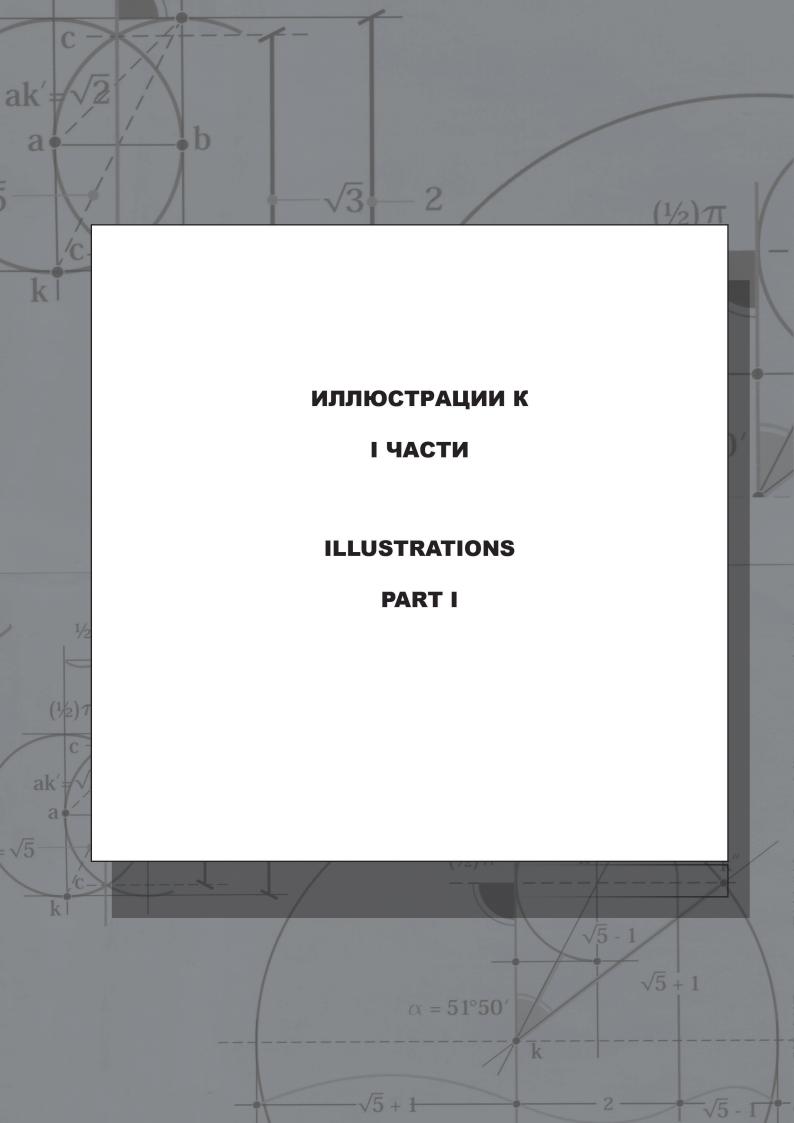
NºNº YC∏	Уравнение симметрии пар	Диаметр сферы <i>ÆВ</i>	Еди ница	Размер на чертеже, в мм. Dimensions on drawing, mm				$\alpha\sqrt{5}+A$	
SPE	(УСП) Symmetry-of-pairs Equation (SPE)	Sphere dia. \mathcal{AB} $\sqrt{A^2 + B^2}$	меры в мм Unit of measure mm	Α	$\alpha\sqrt{5}$	В	$\beta\sqrt{5}$	$B + \beta \sqrt{a}$	<u>/5</u>
1 B/A	2	3	4	5	6	7	8	9	10 β/α
A <b 1 2,0</b 	$\frac{\sqrt{5}+1}{2+0\sqrt{5}} = \frac{2-0\sqrt{5}}{\sqrt{5}-1}$	$\sqrt{5}$ 2,236	50	50	111,80	100	0	161,8 100.0	0
2 1,5	$\frac{8\sqrt{5} + 10}{15 + \sqrt{5}} = \frac{15 - \sqrt{5}}{8\sqrt{5} - 10}$	$\sqrt{325}$	6,202	62,02	110,94	93,03	13,87	172.9 106,9	0,125
3 1,375	$\frac{6\sqrt{5} + 8}{11 + \sqrt{5}} = \frac{11 - \sqrt{5}}{6\sqrt{5} - 8}$	$\sqrt{185}$	8,22	65,76	110,28	90,42	18,38	176.0 108,8	0,166
4 1,166	$\frac{4\sqrt{5}+6}{7+\sqrt{5}} = \frac{7-\sqrt{5}}{4\sqrt{5}-6}$	$\sqrt{85}$	12,12 7	72,76	108,47	84,89	27,12	181.23 112,0	0,250
5 1,048	$\frac{13\sqrt{5} + 21}{22 + 4\sqrt{5}} \frac{22 - 4\sqrt{5}}{13\sqrt{5} - 21}$	$\sqrt{925}$	3,676	77,2	106,86	80,87	32,88	184.1 113.7	0,307
A>B 6 0,846	$\frac{7\sqrt{5} + 13}{11 + 3\sqrt{5}} = \frac{11 - 3\sqrt{5}}{7\sqrt{5} - 13}$	$\sqrt{290}$	6,565	86,12	103,7	72,87	44,44	188,1 110,2	0,428
7 0,75	$\frac{2\sqrt{5}+4}{3+\sqrt{5}} = \frac{3-\sqrt{5}}{2\sqrt{5}-4}$	$\sqrt{25}$	22,36 1	89,44	100	67,0	50	189,4 117,0	0,500
8 0,636	$\frac{5\sqrt{5} + 11}{7 + 3\sqrt{5}} = \frac{7 - 3\sqrt{5}}{5\sqrt{5} - 11}$	$\sqrt{170}$	8,574	94,3	95,86	60	57,5	190,2 117,5	0,600
9 0,529	$\frac{7\sqrt{5} + 17}{9 + 5\sqrt{5}} = \frac{9 - 5\sqrt{5}}{7\sqrt{5} - 17}$	$\sqrt{370}$	5,812 4	98,81	90,98	52,3	65	189,8 117,3	0,714
10 0,437	$\frac{6\sqrt{5} + 16}{7 + 5\sqrt{5}} = \frac{7 - 5\sqrt{5}}{6\sqrt{5} - 16}$	$\sqrt{305}$	6,402	102,4	85,89	44,81	71,57	188,3 116,4	0,833
11 0,333	$\frac{\sqrt{5} + 3}{1 + \sqrt{5}} = \frac{1 - \sqrt{5}}{\sqrt{5} - 3}$	$\sqrt{10}$	35,35	106,1	79,045	35,35	79,04	185,1 114,3	1,000,
12 0,214	$\frac{4\sqrt{5} + 14}{3 + 5\sqrt{5}} = \frac{3 - 5\sqrt{5}}{4\sqrt{5} - 14}$	$\sqrt{205}$	7,808	109,3	69,83	23,42	87,30	179,1 110,7	1,250
13 0,125	$\frac{2\sqrt{5} + 8}{1 + 3\sqrt{5}} = \frac{1 - 3\sqrt{5}}{2\sqrt{5} - 8}$	$\sqrt{65}$	13,86 7	110,9	62,015	13,87	93,02	172,9 106,9	1,500
14 0,077	$\frac{3\sqrt{5} + 13}{1 + 5\sqrt{5}} = \frac{1 - 5\sqrt{5}}{3\sqrt{5} - 13}$	$\sqrt{170}$	8,575	111,5	57,52	8,575	95,87	169 104,4	1,666
15 0,043	$\frac{5\sqrt{5} + 23}{1 + 9\sqrt{5}} = \frac{1 - 9\sqrt{5}}{5\sqrt{5} - 23}$	$\sqrt{530}$	4,856	111,8	54,3	4,85	97,73	166 102,6	1,800

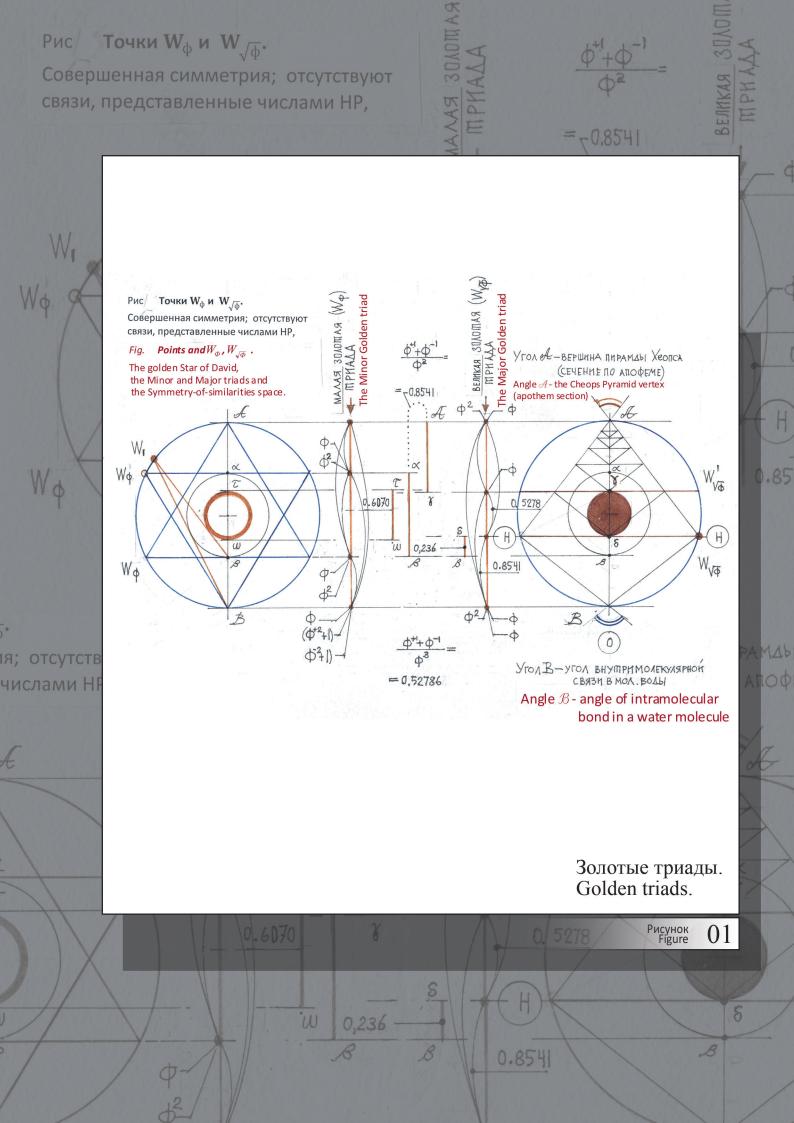
Таблица 4. Симметриии $(\frac{+}{-} = \frac{+}{-})$ и закон обратных дихотомий:

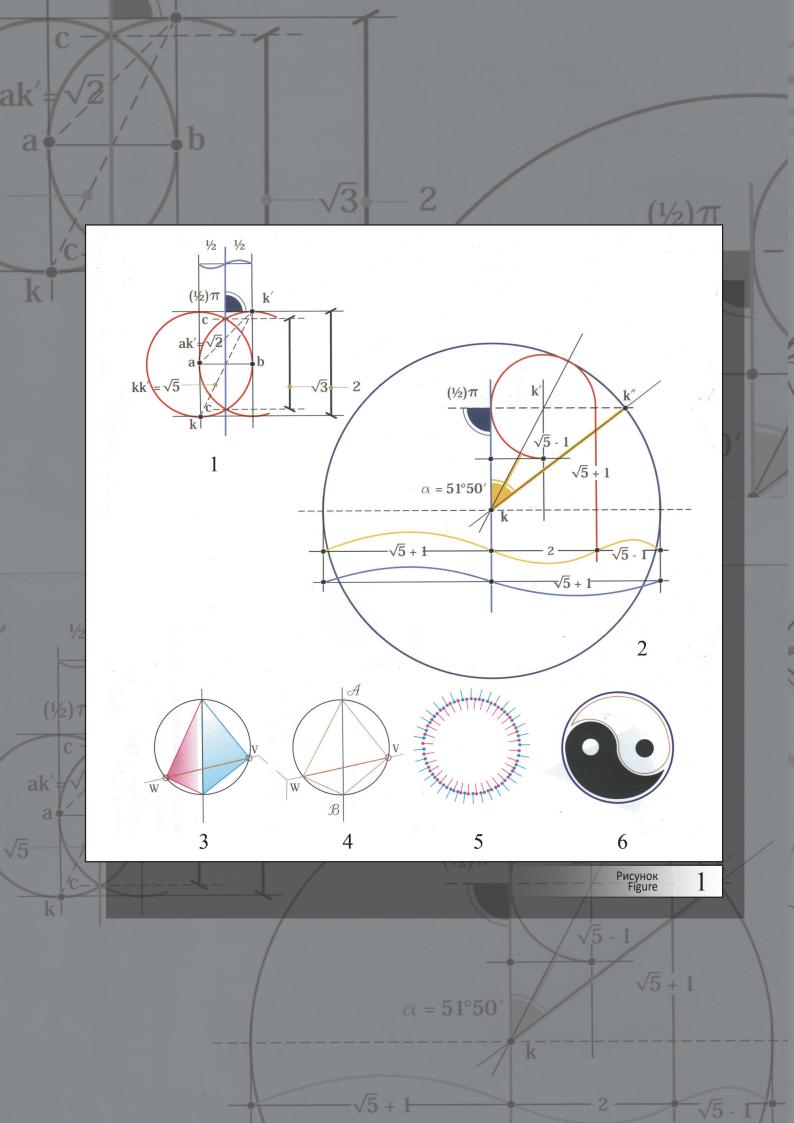
Table 4. Symmetry and the law of contrary dichotomies.

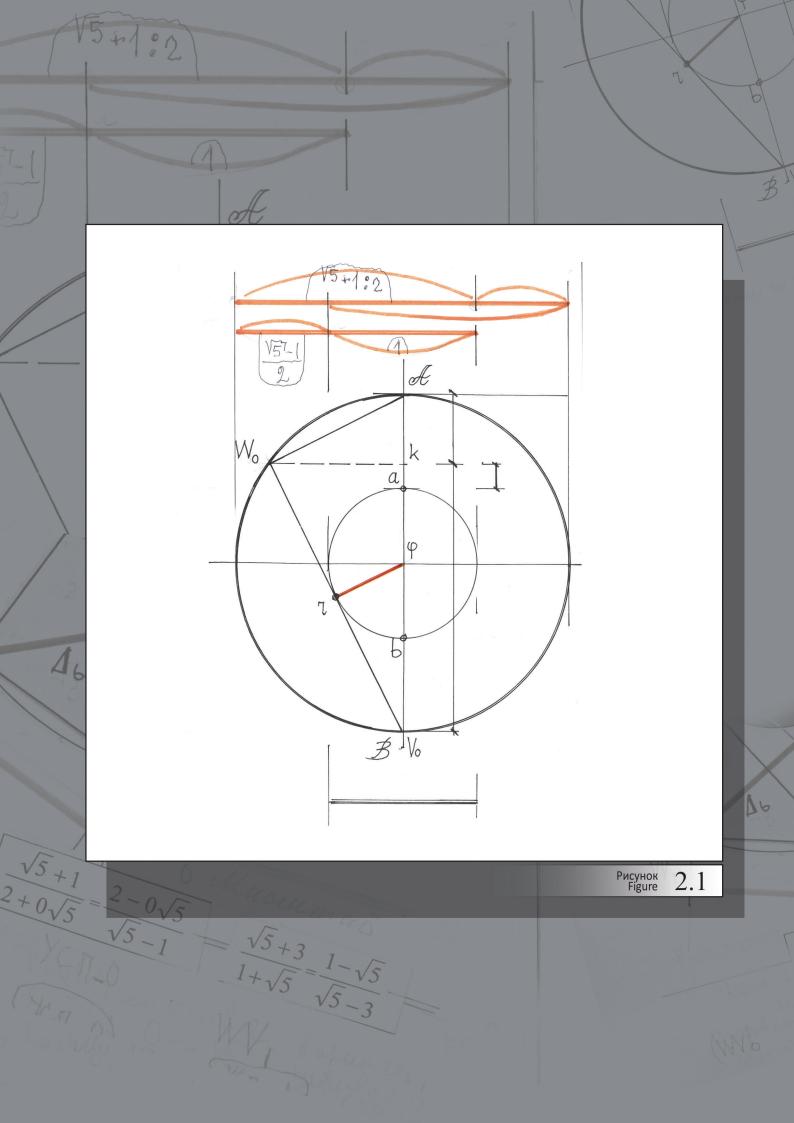
A =
$$1/2 (5\beta + B)$$
 B = $1/2 (5 \propto -A)$
 $\propto = 1/2 (\beta + B)$ $\beta = 1/2 (\propto -A)$

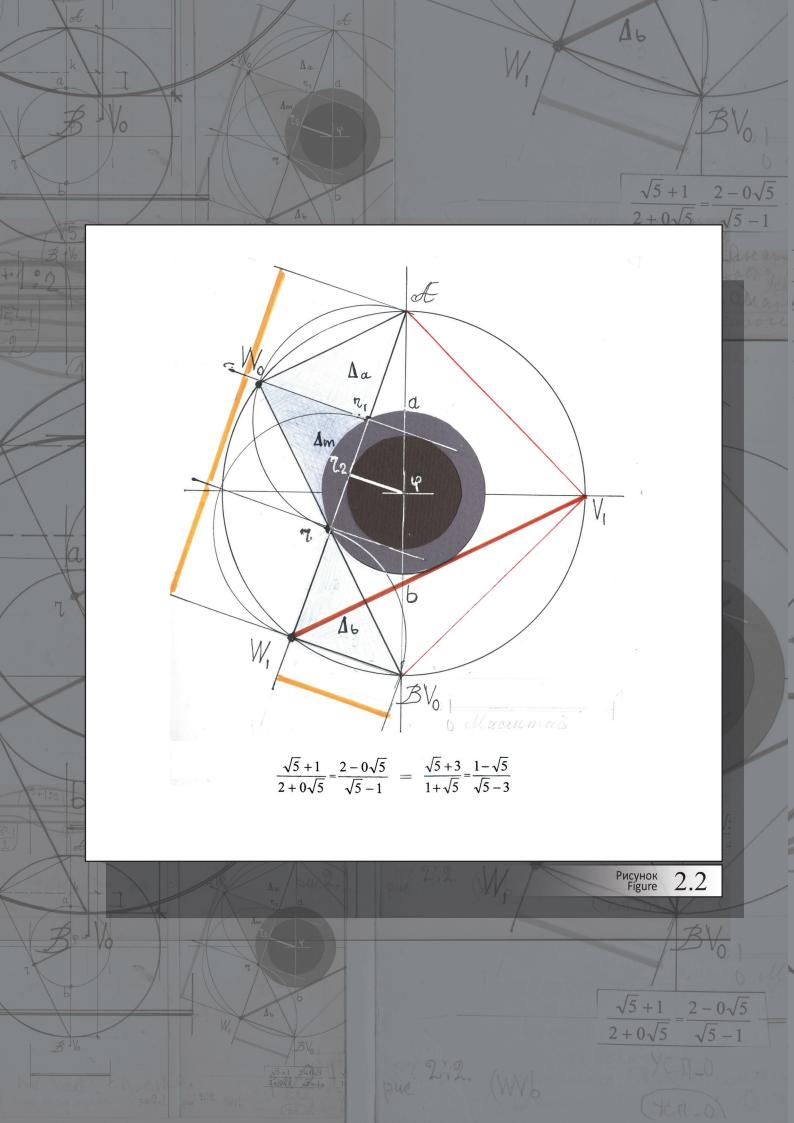
ЛЕВАЯ ЧАСТЬ \leftrightarrow ПРАВАЯ ЧАСТЬ Right part Left part УСП -16 SPE-16 15=0,5(-5+35)=15 Α -15=0,5(5-35)= -15 Α $\frac{53,013}{32,763} = \frac{37,236}{23,013} = \phi$ $\frac{17\sqrt{5}+15}{2} = \frac{35+\sqrt{5}}{2}$ 17=0,5(35-1) = 17 \propto +1= 0,5(17-15)=+1 \propto $35 - \sqrt{5}$ $-\frac{17\sqrt{5} - 15}{17\sqrt{5}}$ 1.618 = 1,618 1.618 35=0.5(85-15)=35 В -15=0,5(5-35) =-15 В -1 =0.5(15-17)=-1 **+17**=0,5(+1-35)=**-17** B УСП - 17 15=0,5(35-5)=15 5=0,5(-5+15)=5 Α $\frac{20,652}{12,764} = \frac{17,236}{10,652} = \Phi$ 7=0,5(-1+15) = 7 SPE-17 \propto 1=0,5(-5+7)=1 \propto $\frac{7\sqrt{5}+5}{15-\sqrt{5}} = \frac{15+\sqrt{5}}{7\sqrt{5}-5}$ = 1,618 1.618 1.618 15=0.5(35-5)=15 -5=0.5(5-15)=-5 В В **-1** =0.5(7-5)= **+1** +7=0.5(15-1)=+7 β УСП - 18 7=0,5(-15+29) = 7 29=0,5(65-7) = 29 Α $\frac{36,068}{33,060} = \frac{35,708}{33,060} = \phi$ 13=0,5(-3+29) =13 3=0,5(-7+13)=3SPE-18 \propto \propto 22,292 22,069 $\frac{13\sqrt{5}+7}{29-3\sqrt{5}} = \frac{29+3\sqrt{5}}{13\sqrt{5}-7}$ = 1,618 1.618 1.618 29=0.5(65-7)=29 -7=0.5(15-29)=-7 В В **-3=** 0.5(13-7)= **+3 +13** =0.5(3-29)=**-13** ß УСП - 19 141=0,5(335-53) =141 A 53=0,5(-35+141)=53 A SPE-19 $67 = 0.5(-7 + 141) = 67 \propto$ 7=0,5(67-53) = 7 $\frac{202,816}{125,347} = \frac{156,652}{96,816} = \varphi$ 1.618 = 1,618 $\frac{67\sqrt{5}+53}{141-7\sqrt{5}} = \frac{141+7\sqrt{5}}{67\sqrt{5}-53}$ 141= 0.5 (335-53)= 141 B -53= 0,5(35-141)=-53 B 1.618 7 =0.5(67-53)= 7 +67=0.5(+7-141)=-67**УСП** - 9 УСП - 8 УСП - 16 УСП - 2 SPE-9 $\frac{7\sqrt{5}+17}{9+5\sqrt{5}} = \frac{9-5\sqrt{5}}{7\sqrt{5}-17}$ $\frac{5\sqrt{5}+11}{7+3\sqrt{5}} = \frac{7-3\sqrt{5}}{5\sqrt{5}-11}$ $\frac{3\sqrt{5}+5}{10+4\sqrt{5}} = \frac{10-4\sqrt{5}}{3\sqrt{5}-5}$ $\frac{8\sqrt{5}+10}{15+\sqrt{5}} \; = \; \frac{15-\sqrt{5}}{8\sqrt{5}-10}$ УСП - 1 SPE-1 $\frac{\sqrt{5}+1}{2+0\sqrt{5}} = \frac{2-0\sqrt{5}}{\sqrt{5}-1}$

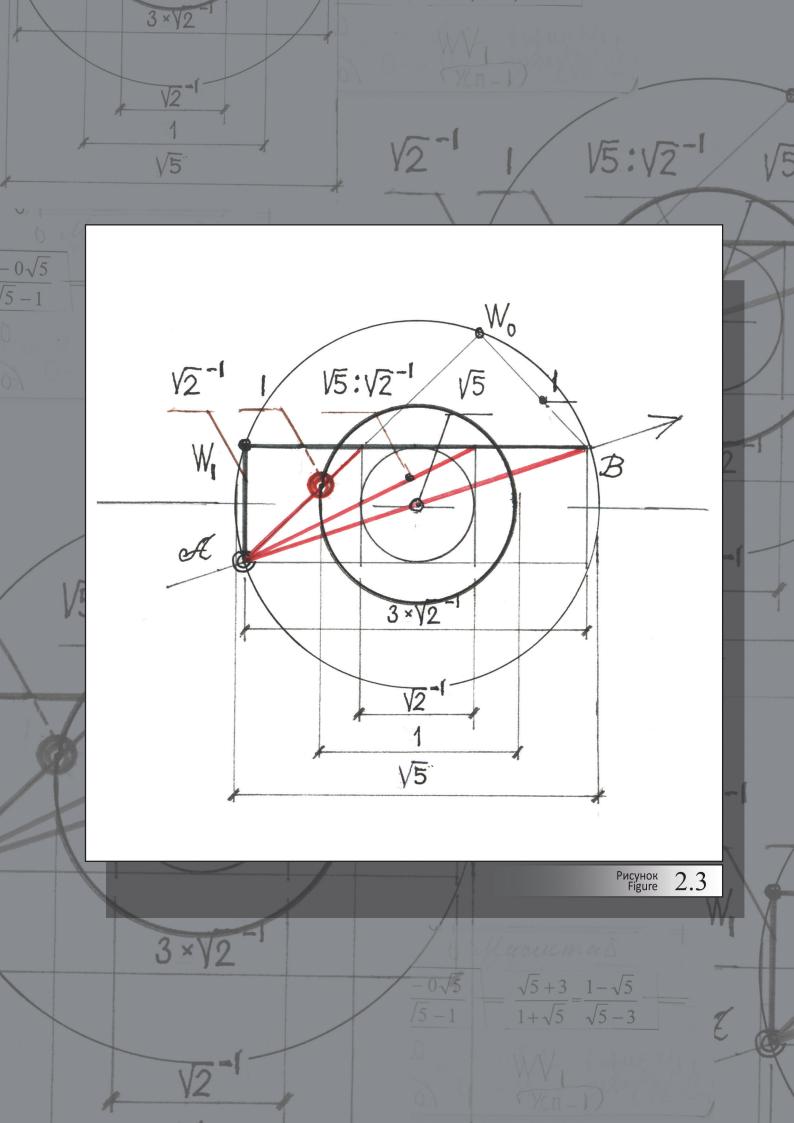


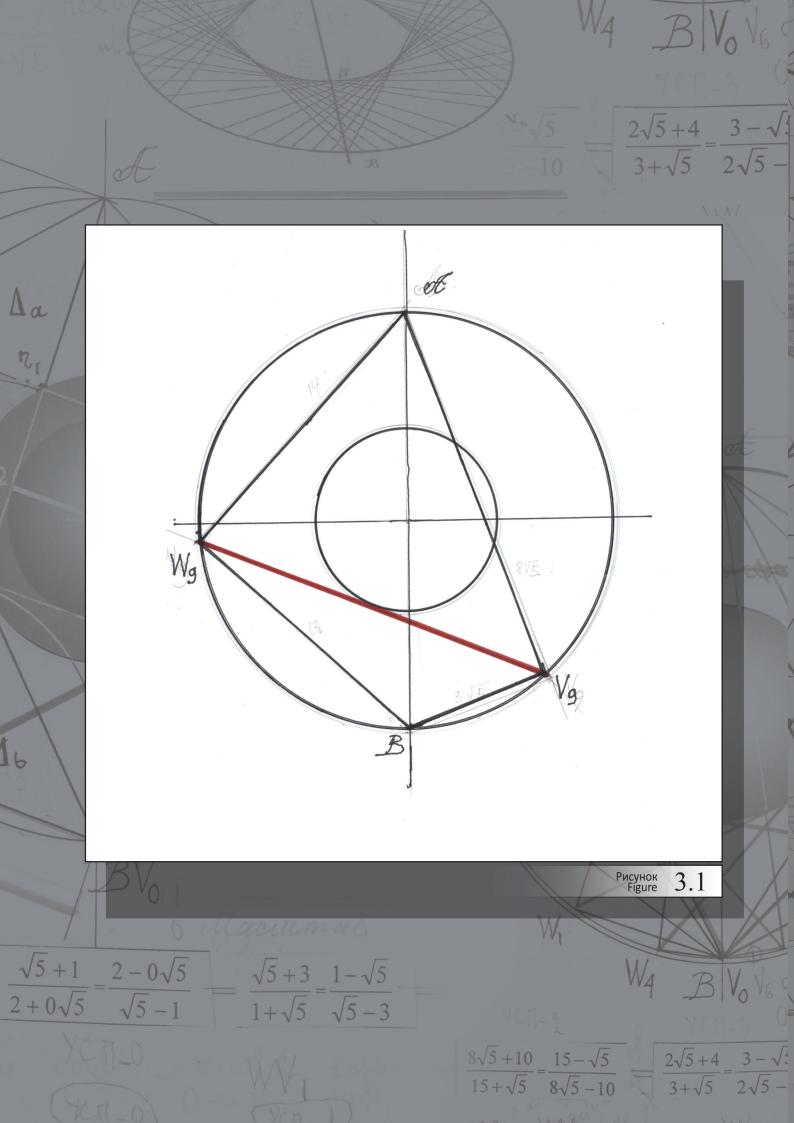


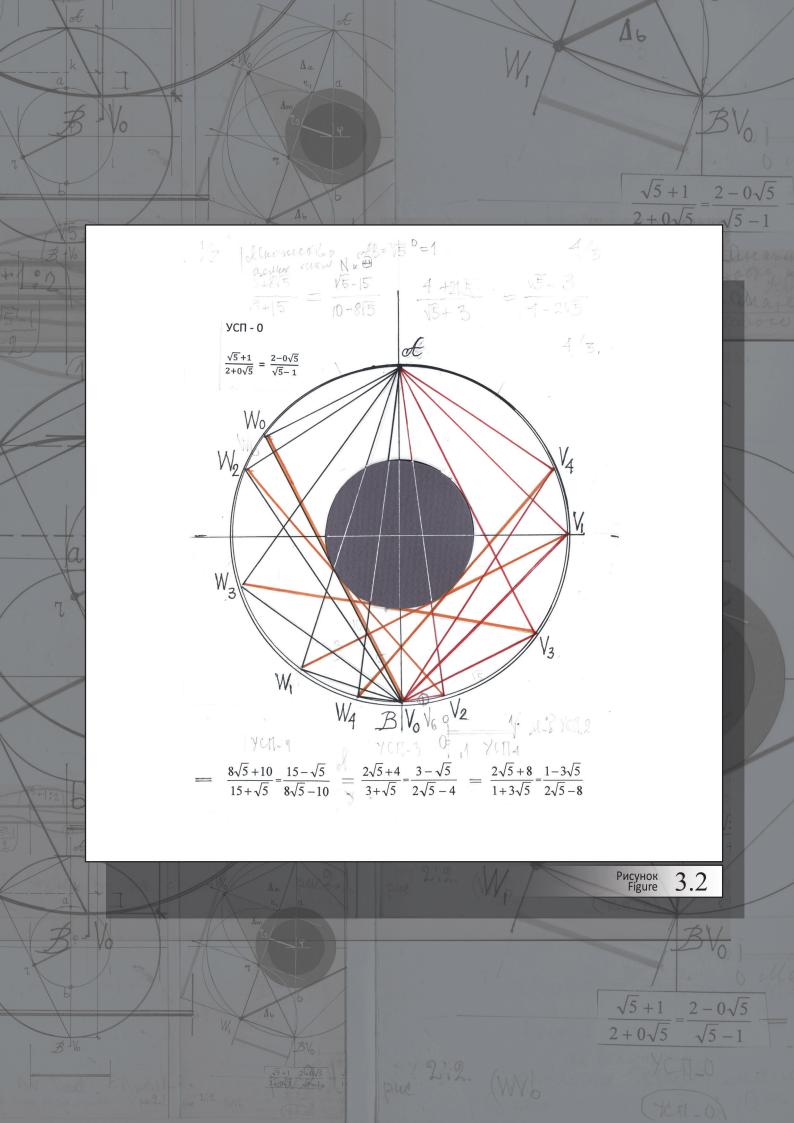


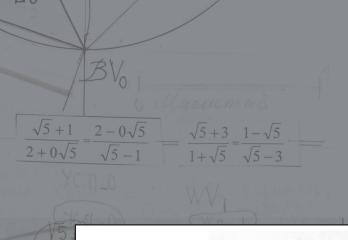


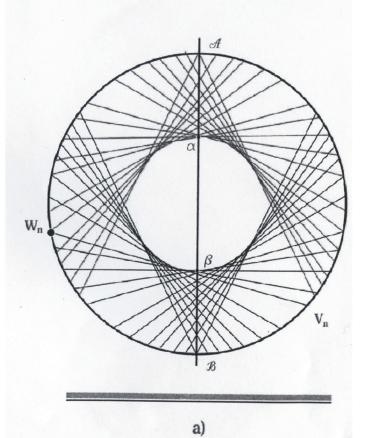












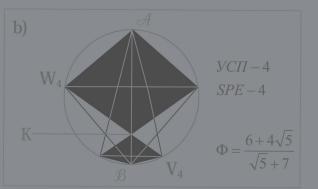
Вторая константа Second invariable

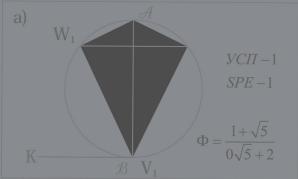
$$WV = \Phi^{+l} + \Phi^{-2} = \Phi^{+2} - \Phi^{-l} = 2$$

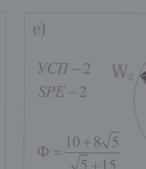
$$\mathcal{AB} = \sqrt{5} \qquad \qquad \alpha\beta = 1$$

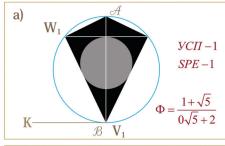
Рисунок Figure 3.3

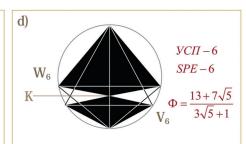
$$\frac{8\sqrt{5} + 10}{15 + \sqrt{5}} = \frac{15 - \sqrt{5}}{8\sqrt{5} - 10} = \frac{2\sqrt{5} + 4}{3 + \sqrt{5}} = \frac{3}{2\sqrt{5}}$$

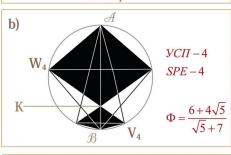


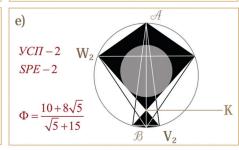


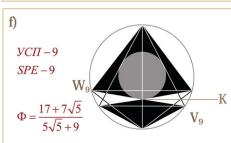




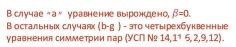








$$\Phi_{n} = \frac{A + \alpha\sqrt{5}}{b\sqrt{5} + B} = \frac{b\sqrt{5} - B}{A - \alpha\sqrt{5}} = \frac{-b\sqrt{5} + B}{-A + \alpha\sqrt{5}}$$

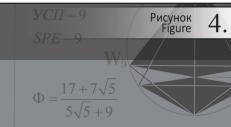


g)

In case "a" the equation is in a generate form, β =0. In other cases ("b-g") we have the four-letter symmetry-of-pairs equations (SPE 14, 11, 6, 2, 9, 12).

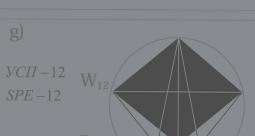
$$\Phi = \frac{3+\sqrt{5}}{\sqrt{5}+1}$$

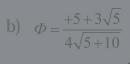
$$\Phi_{n} = \frac{A + \alpha\sqrt{5}}{b\sqrt{5} + B} = \frac{b\sqrt{5} - B}{A - \alpha\sqrt{5}} = \frac{-b\sqrt{5} + B}{-A + \alpha\sqrt{5}}$$



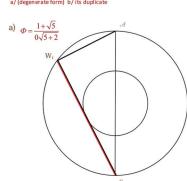
В случае «a/» уравнение вырождено, β =0. В остальных случаях (b-g/) - это четырехбуквенны уравнения симметрии пар (УСП № 14,1 1 6,2,9,12).

In case «a/» the equation is in a generate form, β =0. In other cases ("b-g/") we have the four-letter symmetry-of-pairs equations (SPE 14, 11, 6, 2, 9, 12).





The pair of natural integers 2:1 correlates with two θ -series pairs: degenerate pair $0\sqrt{5}$: $\sqrt{5}$ and pair 10: 5 a/ (degenerate form) b/ its duplicate



 $\mathcal{AB}=\sqrt{5}$ $W_1V_1=2$ $W_1V_1\equiv V_1\mathcal{B}$ Откуда следует $BV_1=\beta=0$ Whence it follows: $BV_1=\beta=0$

 $\mathcal{AB} = 5\sqrt{5}$ $\mathcal{A}W_1 = 5$ $\mathcal{A}J = 3\sqrt{5}$ $\mathcal{B}J = 4\sqrt{5}$ Откуда следует $\mathcal{A}J:\mathcal{B}J=3:4;\;\;W_{\text{\tiny I}}B:\mathcal{A}W_{\text{\tiny I}}=2$ Whence it follows: $\mathcal{A}J:\mathcal{B}J=3:4;\ W_{\text{\tiny I}}B:\mathcal{A}W_{\text{\tiny I}}=2$

5.1

5.2

Puc. 11. Fig. 11.

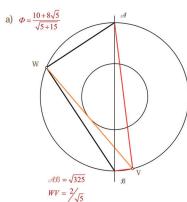
чисел НР 3:2

$$0 = \frac{10 + 8\sqrt{5}}{10 + 8\sqrt{5}}$$

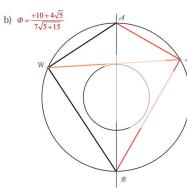
of natural int

$$\rho = \frac{10 + 8\sqrt{5}}{\sqrt{5 + 15}}$$

Паре чисел HP 3:2 отвечают две пары чисел ряда θ , пары $8\sqrt{5}:\sqrt{5}$ и пара $4\sqrt{5}:7\sqrt{5}$ A pair of natural integers 3:2 correlates with θ -series pairs: pair $8\sqrt{5}$: $\sqrt{5}$ and pair $4\sqrt{5}$: $7\sqrt{5}$



 $WV = \frac{2}{\sqrt{5}}$ BV : VA = 1:8; AW : WB = 2:3



 $\mathcal{A}J:\mathcal{B}J=4:7;$ $W\mathcal{B}:\mathcal{A}W=3:2$

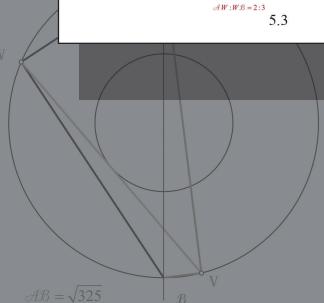
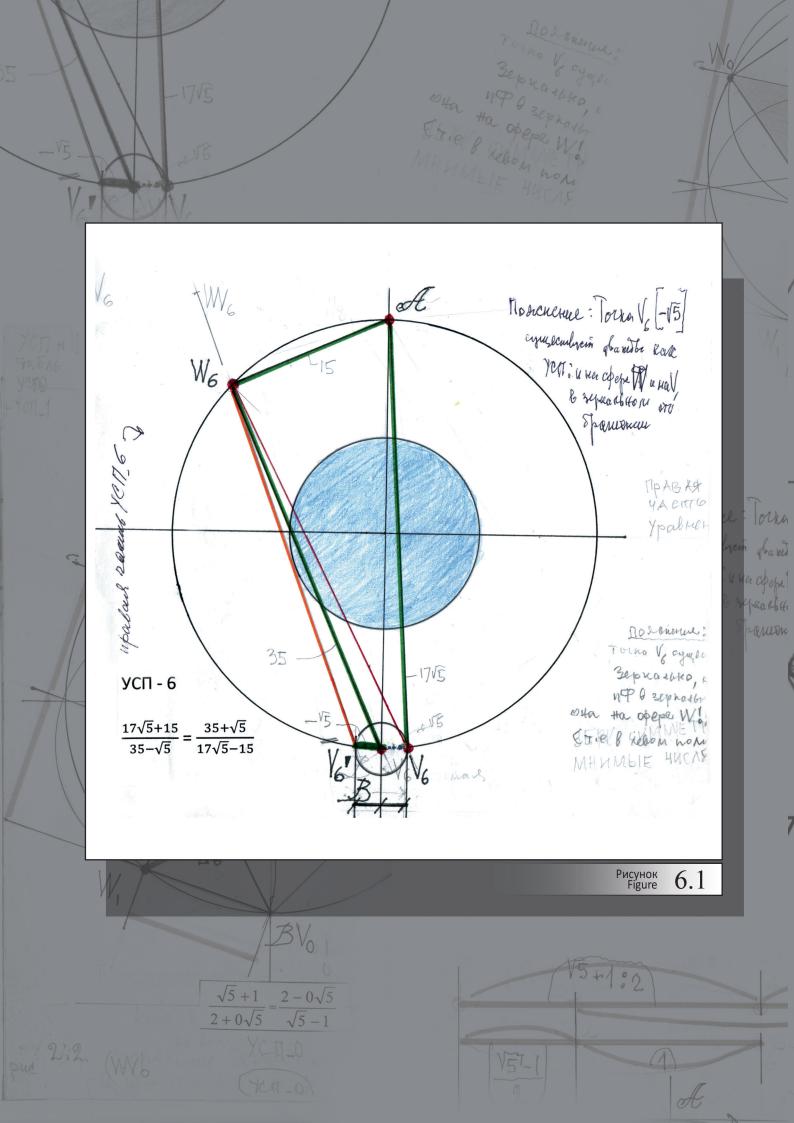
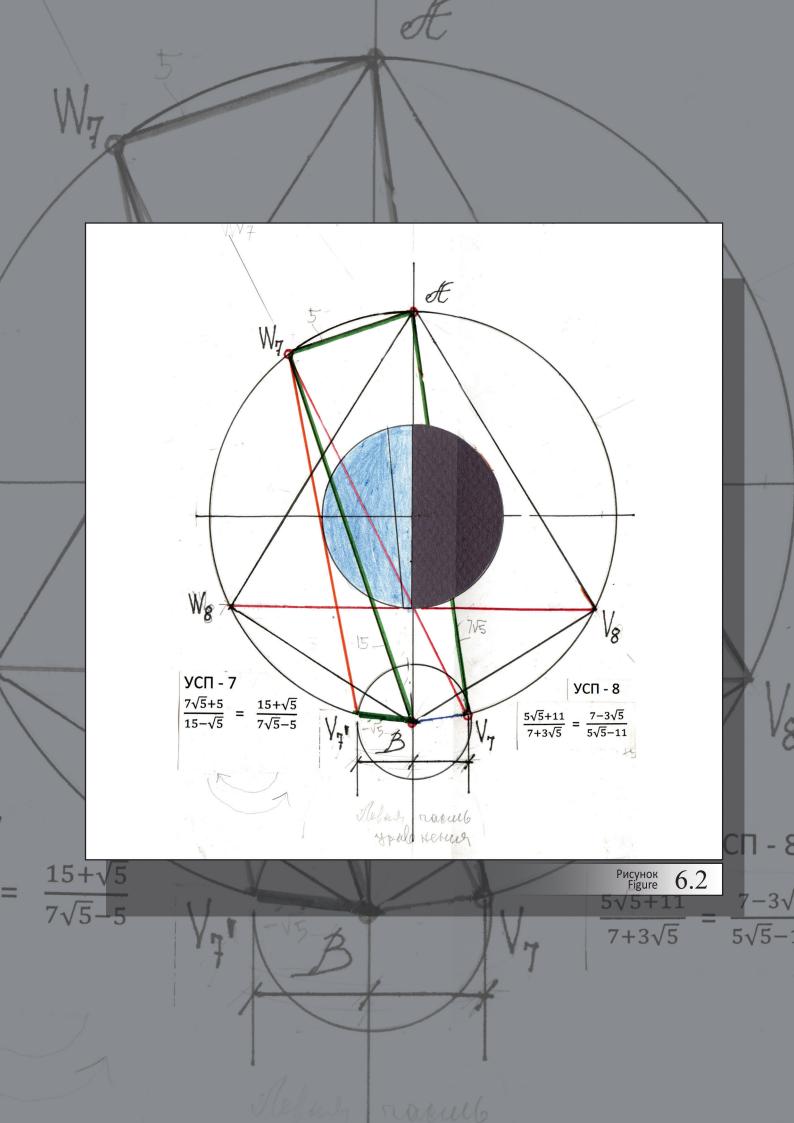
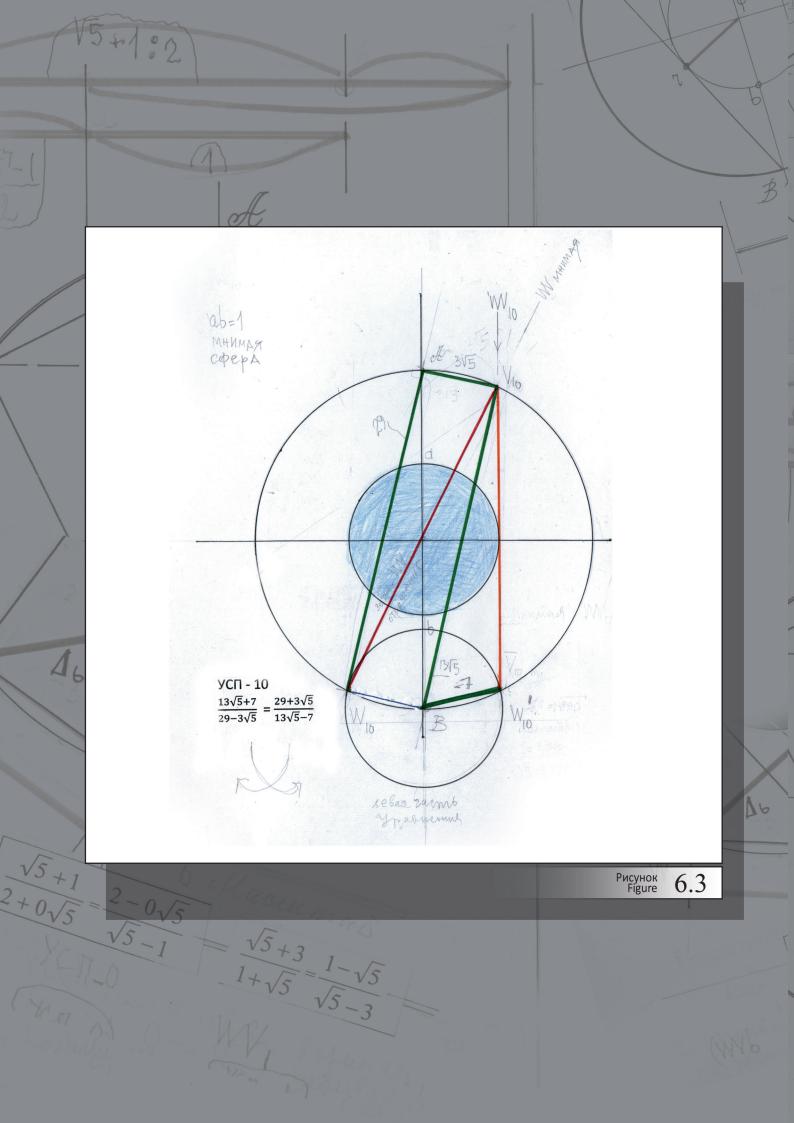
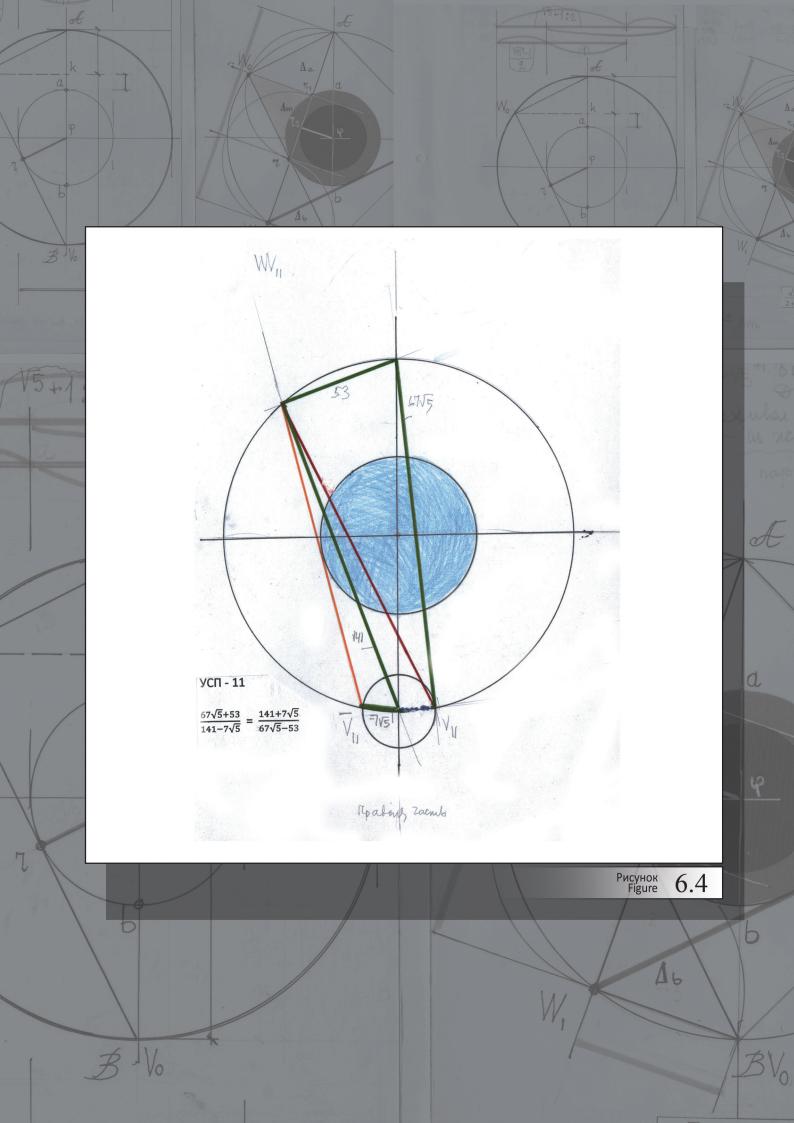


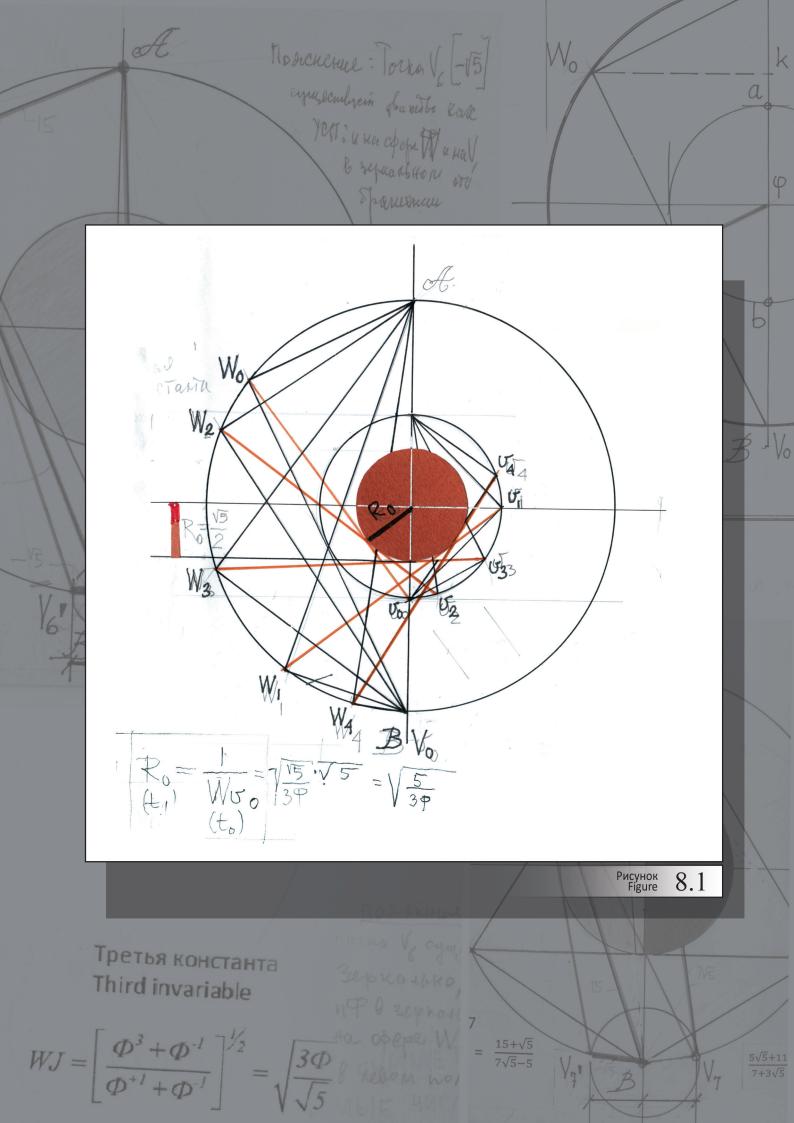
Рисунок 5.1,5.2,5.3,5.4

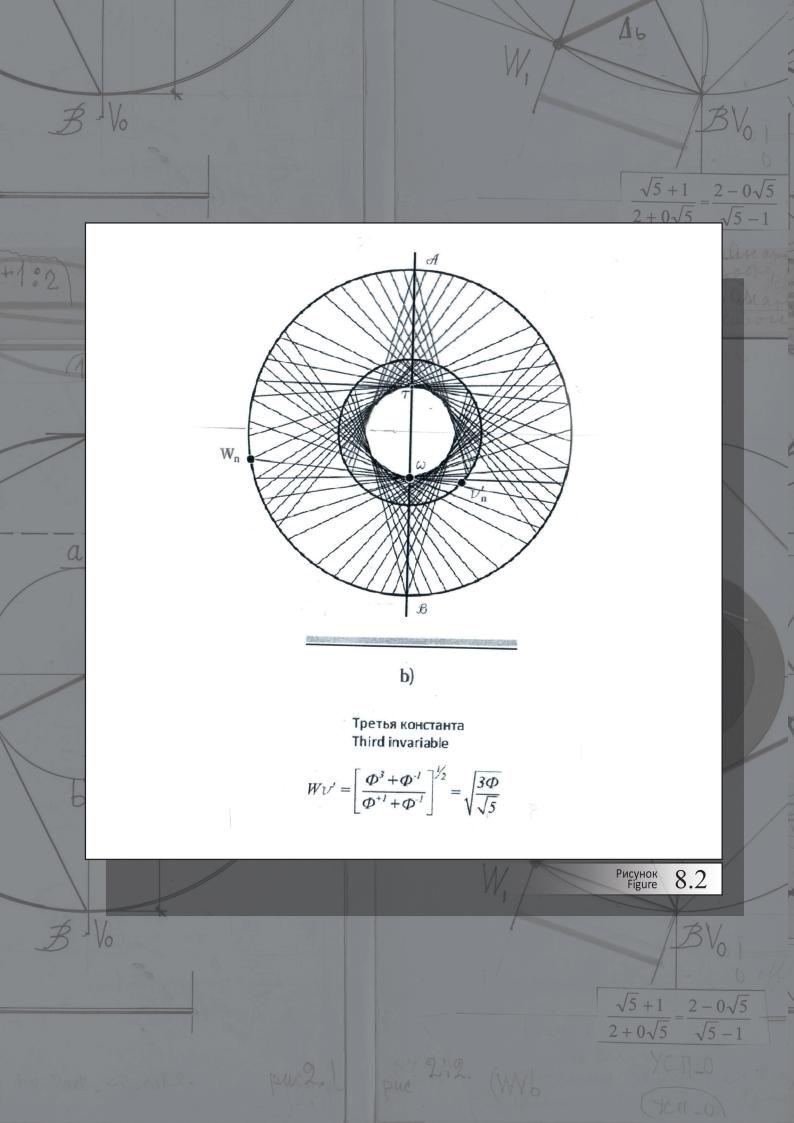


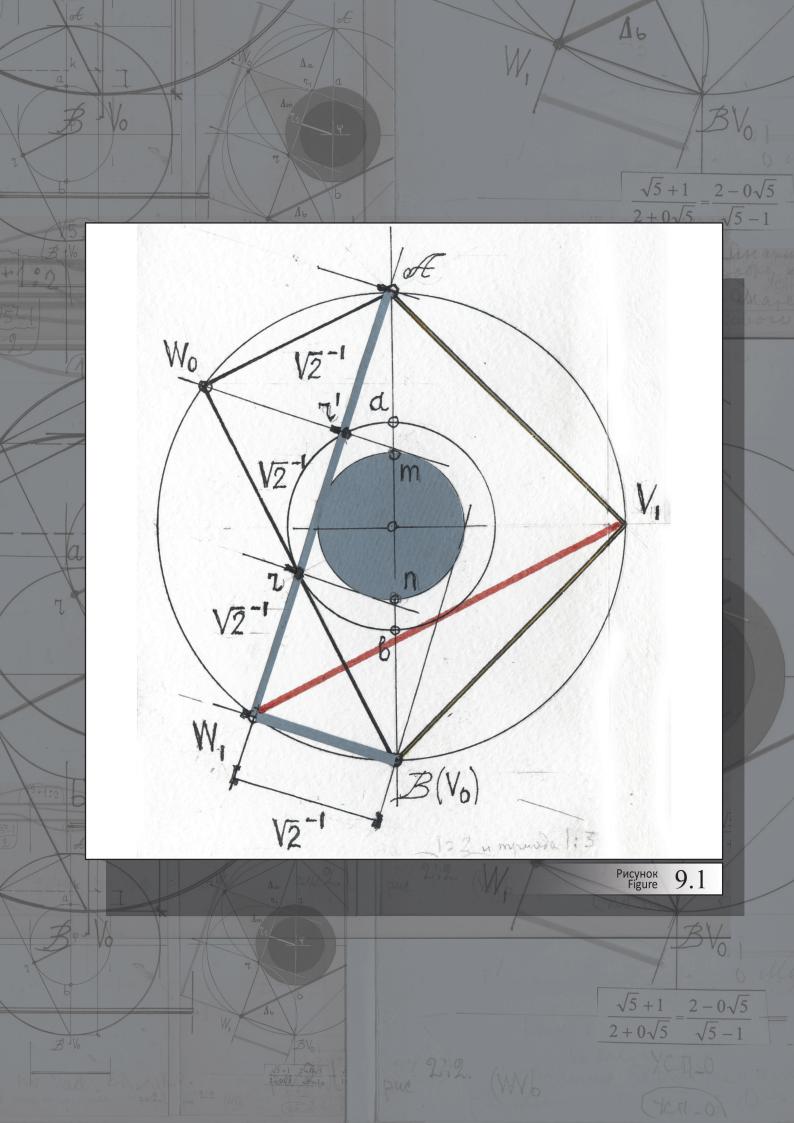


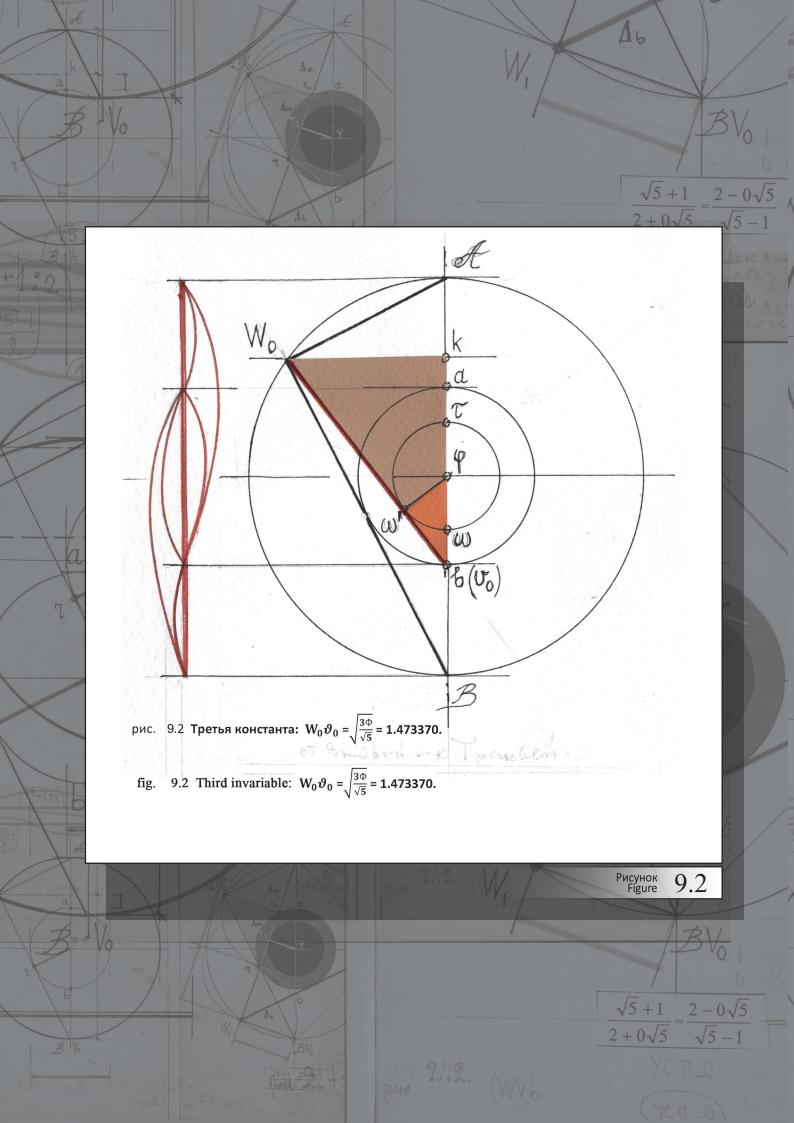


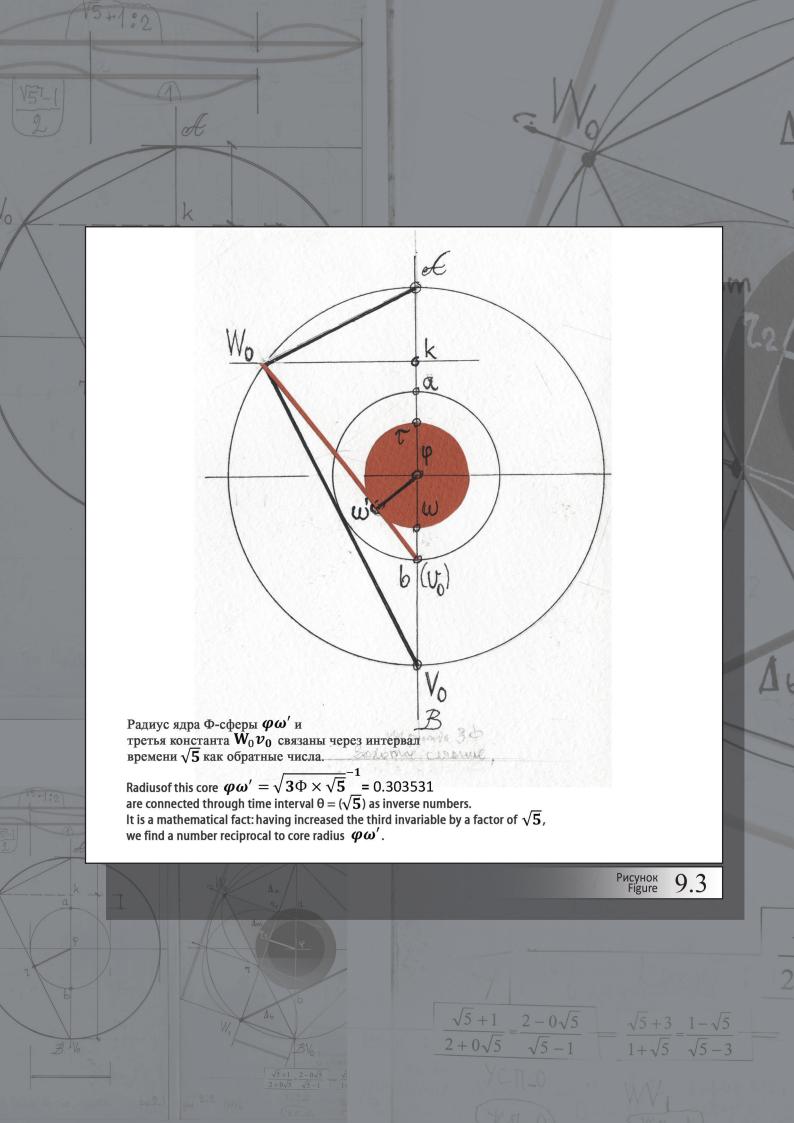












ЭЛЕМЕНТАРНЫЕ ФОРМЫ И ЧЛЕНЕНИЕ ПРОСТРАНСТВА

ЗОЛОТЫЕ ЧИСЛА. ОРТО – И ГЕКСАГОНАЛЬНАЯ СИММЕТРИИ

13 Более четверти века тому назад, записав уравнение Золотого сечения $\Phi^{\pm 2}$ = 1 $\pm \Phi^{\pm 1}$, (где 1= ω^0), в алгебраической форме

$$\omega^{(\pm 2^{\pm 1})} = \omega^0 + \omega^{+1},$$
 (17)

я представил его векторным уравнением, в котором числа ω^n являются модулями экспансии; вектор \vec{S} представляет потенцию Точки начала, вектор \vec{U} — формообразующее воздействие поля, которому Точка начала принадлежит: единичная жизнь принадлежит полю жизни.

$$\vec{\mathbf{R}} = \vec{\mathbf{S}} + \vec{\mathbf{U}} \tag{18}.$$

Уравнением (18) представлено взаимодействие двух формообразующих потенций, \boldsymbol{S} и \boldsymbol{U} . Им отображена двойственность бытия.

Векторами $\overrightarrow{\mathbf{S}_k}$ представлена потенция жизни единичной. Векторы радиально направлены во всех направлениях и равны по величине: модуль вектора $|\mathbf{S}_k| = \mathbf{1}$. Целое представляет образ, подобный цветку одуванчика.

Векторы $\overline{\mathbf{U}_k}$, напротив, разной величины. Модуль $|\mathbf{U}_k| = \boldsymbol{\omega}$ — величина переменная, которая зависит от угла, на который отклонен от биологической вертикали комплементарный ему вектор \mathbf{S}_k . В целом, комплекс одинаково направленных векторов \mathbf{U}_k представляют образ, подобный ножке цветка одуванчика (рис. 10.2).

Принцип двойственности требует рассмотреть также и вариант образования формы, при котором роли модулей обратны: формообразующее число $\boldsymbol{\omega}$ меняет роль, – роль модуля \mathbf{U} на \mathbf{S} : $|\mathbf{S}_k| = \boldsymbol{\omega}$, $|\mathbf{U}_k| = 1$.

Вектор $\overrightarrow{\mathbf{R}}$ воспроизвел на листе бумаги графические образы. Это выполненные вдоль биологической вертикали *сечения* нескольких основополагающих форм живой природы. Яблоко, в котором центр завязи совпал с точкой начала полярных координат; контур морской раковины *Pecten* и панциря мечехвоста японского; форма яйца диких птиц (орлы, орланы, соколы), и яйца птиц семейства утиных; контур капсулы, хранящей головной мозг млекопитающих, форма черепа европейца и символическое "протояйцо", имеющее две плоскости симметрии (аb ovo, "все живое из яйца") (рис. 10.3-4). И все это в одном уравнении 6. Построены восемь" квадратных" индикатрис:

четыре **S** -симметрии (доминирует \mathbf{S}_k) и четыре **U**-симметрии (доминирует \mathbf{U}_k); четыре "+ симметрии" и четыре "- симметрии".

Рабочая схема векторного сложения для случая **U** показана на рис. 10,2.

Но чтобы модель работала, необходимо соблюсти два условия, не следующие из правил математики: 1/ запретить между собой взаимодействие приложенных к точке 0_1 векторов однородных $\mathbf{S} \leftrightarrow \mathbf{S}$, и $\mathbf{U} \leftrightarrow \mathbf{U}$; 2/ разрешить взаимодействие векторов разнородных пар: $\overline{S_k} \leftrightarrow \overline{U_k}$. То есть буквально повторить, в новой ситуации, запрет взаимодействий $\mathbf{A} \leftrightarrow \mathbf{B}$, $\mathbf{a} \leftrightarrow \mathbf{b}$ и разрешение взаимодействий ($\mathbf{A} \leftrightarrow \mathbf{a}$) \leftrightarrow ($\mathbf{b} \leftrightarrow \mathbf{B}$), — выполнить условие, которым теорема Пифагора преобразована в Золотое сечение. Это важное обстоятельство.

⁶ Shevelev Joseph. The golden numbers and biosymmetry. Biology Forum, vol. 87 - 2/3, Perugia, Italy.

- **14** Второй важный математический факт: *Золотые числа* $\Phi^{\pm 1}$, $\Phi^{2^{\pm 1}}$ модули экспансии в *ортогональных направлениях* "+ симметрий". В "—симметриях" в орто- и гексагональных направлениях этих чисел нет. Эти направления экспансии определяют другие модули, и они также могут быть названы "золотыми" в силу явного родства. Это числа $\pmb{\omega}$, корни уравнения целостности $\sum_{n=1}^{\infty} \pmb{\omega}^{(\pm n)} = \mathbf{1}$. Назовем их Золотыми верхним $\Phi_{\pmb{u}}$, нижним $\Phi_{\pmb{l}}$, малым Φ_{sm} , и большим Φ_{g} . Это корни формообразующих уравнений, бинарных и тернарных.
- 1/ бинары: число $\boldsymbol{\omega} = \boldsymbol{\Phi}$ — корень уравнения $\boldsymbol{\omega}^{+1} + \boldsymbol{\omega}^{-1} = \mathbf{1}$; $\boldsymbol{\omega} = \mathbf{1,618034...}$ $\boldsymbol{\omega}^{-1} = \mathbf{0,618034...}$ число $\boldsymbol{\omega} = \boldsymbol{\Phi}_u$ уравнения $\boldsymbol{\omega}^{-1} + \boldsymbol{\omega}^{-3} = \mathbf{1}$; $\boldsymbol{\omega} = \mathbf{1,4655712...}$ $\boldsymbol{\omega}^{-1} = \mathbf{0,6823278...}$ число $\boldsymbol{\omega} = \boldsymbol{\Phi}_l$ — уравнения $\boldsymbol{\omega}^{+2} + \boldsymbol{\omega}^{+3} = \mathbf{1}$; $\boldsymbol{\omega} = \mathbf{0,7548777...}$ $\boldsymbol{\omega}^{-1} = \mathbf{1,3247178...}$ 2/ тернары:
 - мернары: число $\pmb{\omega} = \pmb{\Phi}$ — уравнения $\pmb{\omega}^{-1} - \pmb{\omega}^{-3} + \pmb{\omega}^{-4} = \pmb{1}$ $\pmb{\omega} = \pmb{1,618034...}$ $\pmb{\omega}^{-1} = \pmb{0,618034...}$ число $\pmb{\omega} = \Phi_u$ — уравнения $\pmb{\omega}^2 + \pmb{\omega}^3 + \pmb{\omega}^4 = \pmb{1}$ $\pmb{\omega} = \pmb{1,4655712...}$ $\pmb{\omega}^{-1} = \pmb{0,6823278...}$ число $\pmb{\omega} = \Phi_l$ — уравнения $\pmb{\omega}^3 + \pmb{\omega}^4 + \pmb{\omega}^5 = \pmb{1}$ $\pmb{\omega} = \pmb{0,7548777...}$ $\pmb{\omega}^{-1} = \pmb{1,3247178...}$ число $\pmb{\omega} = \Phi_{sm}$ —уравнения $\pmb{\omega}^1 + \pmb{\omega}^2 + \pmb{\omega}^3 = \pmb{1}$ $\pmb{\omega} = \pmb{0,5436891...}$ $\pmb{\omega}^{-1} = \pmb{1,8392864}$ число $\pmb{\omega} = \Phi_g$. —уравнения $\pmb{\omega}^4 + \pmb{\omega}^5 + \pmb{\omega}^6 = \pmb{1}$ $\pmb{\omega} = \pmb{0,8000950}$ $\pmb{\omega}^{-1} = \pmb{1,2498515}$

Вектор **R,** представляющий собой оно из значений "золотого" числа $\boldsymbol{\omega}^{(\pm 2^{\pm 1})}$ с впечатляющей изобретательностью очертил из Точки начала $\mathbf{0}_1$ формы, в которых можно узнать основополагающие формы живой природы. Модулями экспансии в направлениях правильного деления пространства оказались числа тетраэдра $\sqrt{\Phi}$ (пространство симметрии подобий).

ПРОСТРАНСТВО СИММЕТРИИ ПОДОБИЙ И ВОСПРИЯТИЕ ОБРАЗОВ

15 Вторая теорема Пифагора, если ее изобразить на плоскости, – круг, созданный точками W и V, где каждая точка – пара несоизмеримых чисел. Нет им числа. Но есть на золотой сфере Ф две точки, на все другие непохожие (рис. 0.1, 12,1).

Множество "Точки W, V" образует в совокупности двойную золотую сферу. Золотая сфера — *целое, созданное целыми числами*, сопряженными в пары по принципу несоизмеримости. Точки \mathbf{W}_{Φ} и $\mathbf{W}_{\sqrt{\Phi}}$ принципиально отличны. На золотой сфере это золотые точки: расстояния этих точек от полюсов задано не целыми числами, как это имеет место в случае точек W и V, а золотой пропорцией.

$$W_{\Phi}A / W_{\Phi}B = \Phi^{+1}; W_{\sqrt{\Phi}}A / W_{\Phi}B = \Phi^{1/2}.$$

Проекция точек ${
m W_{\varphi}}$ и ${
m W'_{\varphi}}$ на диаметр окружности AB делит ее на три части поразному.

в случае \mathbf{W}_{Φ} построена *Малая золотая триада* (Φ^{-1} + Φ^0 + Φ^{-1} =AB); в случае $\mathbf{W}_{\sqrt{\Phi}}$ построена *Великая золотая триада* (Φ^{+1} + Φ^0 + Φ^{+1} = AB)

Точка $W_{\sqrt{\Phi}}$ выражает сущность гармонии, поскольку вписывает в круг так называемый "А-ромб", пространство симметрии подобий, замкнутое, конечное и, вместе с тем уходящее бесконечно в собственную глубину (рис. 12.1,2,4). Элемент этой структуры — треугольник Прайса (рис. 12.4). Его три стороны соединены как числа $\sqrt{\Phi}^{-1}$, 1, $\sqrt{\Phi}^{+1}$. Треугольник Прайса создал структуру А-ромба, соединив все точки ритмом $\sqrt{\Phi}$.

В следующем параграфе мы перейдем от плоского пространства симметрии подобий к трехмерному пространству золотых тетраэдров, начало которым дает тот же треугольник $\sqrt{\Phi}$. Но фундаментальный закон гармонии, закон структурирования

природных систем можно элементарно и точно выразить фигурами *на плоскости,* языком элементарной геометрии, циркулем и линейкой. Это проще. И, как это ни парадоксально звучит, иного пути нет.

16 Многомерное и кажущееся непостижимо сложным возможно (и нужно!) вернуть к простому его истоку, т.е. абстрагировать одним числом и одним рисунком. Потому что именно так поступила Природа, создав биологические механизмы восприятия: зрение, слух, обоняние, вкус, тактильные ощущения. Все они устроены так, что символы реального мира возникают в живых системах на «горизонте восприятия» — на *граничной поверхности* (в технике — "interface"). По одну сторону граничной поверхности — "мембраны восприятия" лежит внешний мир, "не Я". По другую — "Я", интеграционная система, духовный, подвластный законам гармонии мир.

Глаз воспринимает световые и цветовые образы внешнего мира, проецируя их хрусталиком на рецепторы сетчатки. Сетчатка — поверхность, слой нейронов, выстилающий дно глазного яблока.

Слух принимает звуковые волны, падающие на барабанную перепонку. Это поверхность.

Обоняние и вкус воспринимают сигналы дендритами, датчиками, расположенными на поверхностях носовой полости(обоняние) и языка (вкус).

Осязание — это эффект касания форм тел внешнего мира кожными покровами, кончиками пальцев, волосками, внедренными в кожные покровы.

Интегральная расшифровка и обработка информации, полученной от всех видов детекторов происходит в коре больших полушарий головного мозга, правой и левой, структуре двоичной, испещренной складками-извилинами, т.е. в поверхностных слоях коры. Таким образом, биоструктуры, ответственные за передачу информации (так же, как Золотое пространство) обнаруживают «диафрагму», разделяющую мир «Я» на две парадоксальные по смыслу зоны. По одну сторону — природа, организованная по законам гармонии, «ведомая», опытно доступная, но в чем-то главном непонятная. По другую — зона «неведомая»: таинственный мир восприятия, духа и интуиции. Результатом встречи этих двух миров, "видимого и невидимого" являются символы, которым, при кодировании сигналов, придают законченную графическую форму чувство и разум человека и воспроизводит человеческая рука. Именно на поверхностях, подобных тем, которыми природа разделяет и связывает внутренний и внешний миры, на «горизонте непознаваемого» возникли иероглифы: буквы, числа, ноты, формулы, рисунки и чертежи. Дифференцированные образы постигаемого мира, закодированного светом, цветом, линией, пластикой, фактурой, и пропорцией.

Вернемся к золотым точкам сферы \mathbf{W}_{Φ} и $\mathbf{W}_{\sqrt{\Phi}}$. Проекция точек \mathbf{W}_{Φ} и $\mathbf{W'}_{\Phi}$ на диаметр окружности AB делит ее на три части в уникальных отношениях (рис.01, 12.1). Построена Малая золотая триада ($\Phi^{-1} + \Phi^0 + \Phi^{-1} = AB$) Положение точки \mathbf{W}_{Φ} ($\mathbf{W}_{\Phi}A$ / $\mathbf{W}_{\Phi}B = \Phi^{+1}$ /1) вписало в чертеж Φ -сферы двойной квадрат $\mathbf{W}_{\Phi}\mathbf{W'}_{\Phi}$,— чертеж основополагающий в пропорциях Средиземноморской архитектуры 8 . Положение точки $\mathbf{W}_{\sqrt{\Phi}}$ определено расстоянием от полюсов A, B связью $\Phi^{+1/2}$ /1. Точка $\mathbf{W}_{\sqrt{\Phi}}$ и ее двойники $\mathbf{W'}_{\sqrt{\Phi}}$ расположены так, что проекция этих точек на диаметр окружности AB делит ее на три части. Построена уникальная

⁸ Подробно: И.Шевелев. Искусство архитектуры. В книге «Основы гармонии». М., Луч, 2009. - стр.14-32

⁷ О геометрическом подобии в зрительном восприятии и становлении разума – в брошюре И. Шевелев. Золотое пространство. Промдизайн-М. Кострома, 2006.

Великая золотая триада ($\Phi^{+1} + \Phi^{0} + \Phi^{+1} = AB$)

Великая триада соединяет золотой пропорцией части в целое не четырежды, как триада малая или триада восходящая, а восемь раз.

Великая золотая триада сыграла выдающуюся роль в истории русского искусства средних веков⁹.

ВТОРАЯ ТЕОРЕМА ПИФАГОРА (ЗОЛОТАЯ СФЕРА) И ЭЛЛИПСОИД $\sqrt{\Phi}$

17 Математика считает окружность частным случаем эллипса: круг это эллипс, оси которого равны, M:Б =1/1=1 и два фокуса совмещены. Вторая теорема Пифагора \equiv уравнение симметрии пар также сфера. Рисунок "Optimistic_solar_ ellipse"(Золотой эллипс"), принадлежащий профессору George Darvas, пробудил желание понять, как связаны эллипсы — любые — и **8 биосимметрий**, которые строит квадратное уравнение целостности $\omega^{\pm 2^{\pm 1}} + \omega = 1$, если видеть в нем уравнение векторное. Вторая теорема Пифагора \equiv уравнение симметрии пар, как ясно из предыдущего, ¹⁰ обнажила скрытые в окружности (а значит и в сфере), друг друга порождающие единицы естественной геометрии. В "Единицах естественной геометрии" на рис. 2.2, 3,3, 8, 9 показано ¹¹, как в "Точке начала" — сфере (геометрическом образе уравнения симметрии пар, числе Ф), объединены и порождают друг друга числа Ф, 1, $\sqrt{5}$, и 1, 2, $\sqrt{3}$. Столь же плотно связала эти константы "эволюция эллипса ": дискретное преобразование окружности, вписанной в квадрат — в эллипс, вписанный и описывающий подобные прямоугольники (таблица 5).

Таблица 5. "Эволюция " золотой структуры параметров эллипса Б/М=1, $\sqrt{\Phi}$, $\sqrt{\bf 5}/\sqrt{\bf 3}$, $\sqrt{\bf 2}$, ; Φ ; $\sqrt{\bf 3}$, 2 и $\sqrt{\bf 5}$ (где ${\bf 1}$ = Φ^{+1} - Φ^{-1} ; ${\bf 2}$ = Φ^{+2} - Φ^{-1} = Φ^{+1} + Φ^{-2} ; ${\bf 3}$ = Φ^{+2} + Φ^{-2}) – и число $\sqrt{\bf 2}$

NºNº	Отношение	Фокусное	Эксцентриситет	Отношение
Эллипсов	осей Б/М	расстояние	отношение	стороны пр-ка
		эллипса (F)	Б/F	m(_{впис)} /M _(опис)
8	$\sqrt{5}/1$ 2.23	5 2	$\sqrt{5}/2$	$\sqrt{2}$
7	2/1 2.00	$\sqrt{3}$	$2/\sqrt{3}$	$\sqrt{2}$
6	$\sqrt{3}/1$ 1.73	$\sqrt{2}$	$\sqrt{3}/\sqrt{2}$	$\sqrt{2}$
5	Ф/1 1.61	$\sqrt{\Phi}$	$\sqrt{\Phi}$	$\sqrt{2}$
4	$\sqrt{2}/1$ 1.41	1	$\sqrt{2}/1$	$\sqrt{2}$
3	$\sqrt{5}/\sqrt{3}$	$\sqrt{2}$ / $\sqrt{3}$	$\sqrt{5} \times \sqrt{3}$	$\sqrt{2}$
(протояйцо)	1.291/1 1.29	0.8165	${\sqrt{2}}$	
2	$\sqrt{\Phi}/1$ 1.27	$\sqrt{\Phi}^{-1}$	Φ/1	$\sqrt{2}$
(окружность)	1/1 1.00	0	F → B	Не существует

Модель показала: идеальная форма, эллипс (геометрическая схема) и живая форма (кривая, воспроизведенная векторным уравнением целостности) — не совпали (рис. 11.2).

1/ Замкнутая кривая №3 построенная линейным уравнением $\overrightarrow{\omega^{-1}} = \overrightarrow{\omega} + \overrightarrow{1}$, в точности дублируется кривой, построенной квадратным уравнением $\overrightarrow{\omega^{\frac{1}{2}}} = \overrightarrow{\omega} + \overrightarrow{1}$. На языке

⁹ Там же, стр. 106-139.

 $^{^{10}\,}$ Они же в книге И.Шевелев. Гармония в зеркале геометрии. 2013. стр. 17-18.

¹¹ И. Шевелев. Константы естественной геометрии. на сайте ishevelev.ru, 2015.

параметров эллипса — "протояйцо" — псевдо эллипс, поскольку его параметры заданы иначе:

- 1) в уравнении целостности *линейном* фокусное расстояние величина *постоянная* 0_10_2 = 1, а радиусы величины переменные: это *обратные* числа, $m0_1$ = ω и $m0_2$ = ω^{-1}
- 2) в *квадратном* уравнении фокусное расстояние величина переменная: $0_10_2 = \omega$, а радиусы один постоянная $m0_2 = 1$, второй функция переменной ω , $m0_1 = \omega^{\frac{1}{2}}$.

Соразмерность "живого" эллипса : большая и малая оси, $FM = \sqrt{5}/\sqrt{3}$.

Совмещая эллипсы "живой" ($\sqrt{5}/\sqrt{3}$) и канонический ($\sqrt{5} \times \sqrt{3}$) /1, находим (рис 11.2):

экстремумы совпали, кривая раздвоилась. Живой эллипс – " протояйцо" – упруже, сочнее, полнее. Он золотой. Его большая ось разделена фокусным расстоянием в отношении малой золотой триады $(\Phi^{-1}, 1, \Phi^{-1})$.

Наибольшее по вертикали отклонение кривой "живого эллипса" от кривой классического эллипса, построенного в тех же параметрах М:Б, составило +1/69. В классическом эллипсе (М:Б = $\sqrt{\Phi}/1$) обратными числами являются ось Б= $\sqrt{\Phi}$ и фокусное расстояние $F_1F_2 = \sqrt{\Phi}^{-1}$. В "живом" эллипсе (М:Б = $\sqrt{5}/\sqrt{3}$) обратные числа суть ось М= $\sqrt{3}$ и фокусное расстояние $O_1O_2 = \sqrt{3}^{-1}$.

Любой эллипс можно вписать в прямоугольник М:Б где М и Б оси эллипса, и, затем, вписать в эллипс прямоугольник m:b, подобный прямоугольнику М:Б. Как ясно из рисунка 2, отношение малых стороны вписанного и описанного прямоугольников в любом эллипсе одно и то же, **m**: $\mathbf{M} = \mathbf{1} : \sqrt{\mathbf{2}}$. Среди параметров эллипса в справочной литературе константа $\sqrt{2}$ мне не встретилась. Между тем в естественной геометрии — генетике, физике и в искусстве **геометрическое подобие** и обратные числа фундаментальны. Я имею в виду деление пополам, 1/2; удвоение, 2/1 и отношение $1/\sqrt{2}$, основополагающее в мире кристаллов. Константа $1/\sqrt{2}^{-1}$ связала подобные прямоугольники (прямоугольник, описывающий эллипс и вписанный в него) и этим обозначила границу бытия и не бытия эллипсоида. Это фундаментально. Цикл метаморфоз замкнутых криволинейных ("живых") форм замкнут. Математически определен их единый **первоисток** — свернутая в Точку начала Ф-сфера.

18 Интрига в том, что для окружности как частного случая эллипса положение фокусов в полюсах A, B невозможно. А окружность Пифагора (уравнение симметрии пар) построена не радиусом, как принято строить окружность, а из двух полюсов, так же, как создается всякий эллипс. Задан эксцентриситет, $F_1F_2 < Б$. В золотой сфере, где свернуты алгоритмы метаморфоз, расположение фокусов в полюсах A, B, напротив, необходимо: именно полярное положение двух центров создало вторую теорему Пифагора и преобразовало ее в золотое сечение уравнение симметрии пар, алгоритм жизни. Фокуса A0 вышли за предел, допущенный уравнениями эллипса. Когда изначально совмещенные точки A1, A2 достигли противоположных границ эллипса (FF=B1), эллипс исчез.

Теорема Пифагора видит окружность двойной; окружностей две. Они лежат друг в друге, ибо построены двумя несоизмеримыми парами чисел, N/1 и θ/1, т.е. созданы точками поверхности, расстояния которых до полярных фокусов несоизмеримы. Тем самым две **комплементарные** окружности (сферы) проникая друг друга беспрепятственно входят друг в друга, создавая третье, сферу-целое, не сталкиваясь ни в одной точке, и становятся частями нового **целого** – структуры следующего по сложности

уровня, сохраняя, каждая, целостность, особость, "личность". Эта метаморфоза и есть преобразование уравнения Пифагора в Золотое сечение.

Знаменательно, что сценарий события "*исчезновение*" математически обратен сценарию *становления*. Преобразование теоремы Пифагора в уравнение симметрии пар мгновенно. Это превращение уравнения, описывающего бесчисленные точки поверхности сферы в уравнение, описывающее только *взаимодействие двух ее полюсов*. Сфера-эллипс, число *Единица* (M:Б=1:1=1), по определению Галилея число, разумом непостижимое, перешло в пространство метаморфоз, имеющее пределом "мнимый эллипсоид" M:Б = 0:N, где ($1>N\to\infty$). Оба события: метаморфоза уравнения Пифагора в золотое сечение и преобразование эллипсоида в мнимый эллипсоид (бытие" \leftrightarrow "небытие") представлены одним и тем же алгоритмом. *Здесь 0 и 1 соединены замкнутым циклом преобразований*. Это раздвоение единого: совмещение и разделение точек F_1, F_2 в уравнении эллипса или совмещение и разделение сферических поверхностей,

диаметры которых суть числа $\sqrt{5}$, 1, $\sqrt{2}$, $\sqrt{\frac{3\Phi}{\sqrt{5}}}$, и которые созданы преобразованием уравнения Пифагора в алгоритм Золотого сечения, или, иными словами, в алгоритм "Симметрия пар", свернутый в сфере "Точка начала".

ТЕТРАЭДР $\sqrt{\Phi}$ И ДЕЛЕНИЕ ПРОСТРАНСТВА

19 Треугольник принадлежит плоскости. Появление четвертой точки создает трехмерное пространство. Четыре грани простейшего из пяти платоновых *правильных* тел – равносторонние треугольники. Но выполнить (вымостить, как говорят кристаллографы) математическое пространство, безграничное и непрерывное, одним платоновым тетраэдром невозможно. Необходимо тетраэдры чередовать с октаэдрами, в отношении 2:1. Причина в том, что "правильный" тетраэдр не содержит **прямого угла** и, следовательно, сферы, круга (числа π) т.е. идеи движения, экспансии.

Единица *природная*, модуль реального пространства, должна строить углы $\frac{\pi}{3}$ и $\frac{\pi}{2}$ (кристаллы и волны) и углы $\frac{\pi}{5}$ (живая природа). И таить в себе, в свернутой форме, законы симметрии. Такой структурой является $mempa extit{3} extit{p} \sqrt{\Phi}$, модуль пространства симметрии подобий (ПСП). Его линейная составляющая — ребро тетраэдра $\sqrt{\Phi}$ — величина переменная. Шесть ребер тетраэдра суть число Φ^n , где n= 0, 1, $\pm \frac{1}{2}$. Углы четырех граней его суть углы $\frac{\pi}{2}$, $\frac{\pi}{3}$, $\frac{\pi}{5}$ и угол, равный $\frac{1}{2}$ угла внутримолекулярной связи молекулы воды, близкого 104° (Рис. 11,2 и 12.4,5).

Выполнение пространства уникальным тетраэдром $\sqrt{\Phi}$ подробно рассмотрено мной в брошюре "Другое пространство" 12 .

20 Известно, что задача на деление пространства одним правильным (платоновым) тетраэдром решения не имеет. Тетраэдр $\sqrt{\Phi}$ решает эту задачу, трактуя пространство не статичным, а динамичным. Тетраэдр изменяет длину ребра, равную $\sqrt{\Phi}^{\pm n}$, где n = 0, 1, 2, изменяя тем самым свою форму, — но **объем его остается неизменным.** "Тело" тетраэдра $\omega = \sqrt{\Phi}$ "дышит". Это и позволяет ему, *соло*, выполнить трехмерное пространство

¹² И. Шевелев. Другое пространство. Авенир-Дизайн., Кострома. 2010 И. Шевелев. Гармония в зеркале геометрии. ДиАр., Кострома. 2013

абсолютно плотно 13 (рис. 12, 13, 14). Единица $\omega = \sqrt{\Phi}^{\pm 1}$ и ритм, в котором изменяет величину ребро, определены числом $\sqrt{\Phi}$. Тетраэдр $\sqrt{\Phi}$ выполняет безграничное непрерывное пространство двумя независимыми приемами: как структуру minor либо major. Или же делит пространство на двоичной основе, комбинируя тетраэдры minor и major послойно.

Правило, по которому устроен золотой тетраэдр, сложнее "правила" Платона. Три равновеликих тетраэдра $\sqrt{\Phi}$ упакованы в правильную трехгранную призму: Вариантов компоновки два. Призму-minor составили тетраэдры В,С,В, призму-major — тетраэдры А,D,А. Опрокинутые тетраэдры равны. Тетраэдр В \uparrow тождественен В \downarrow , А \uparrow тождественен А \downarrow . Пространство между тождественными тетраэдрами — это третьи тетраэдры (С и D), (Рис. 12.5, 13,14).

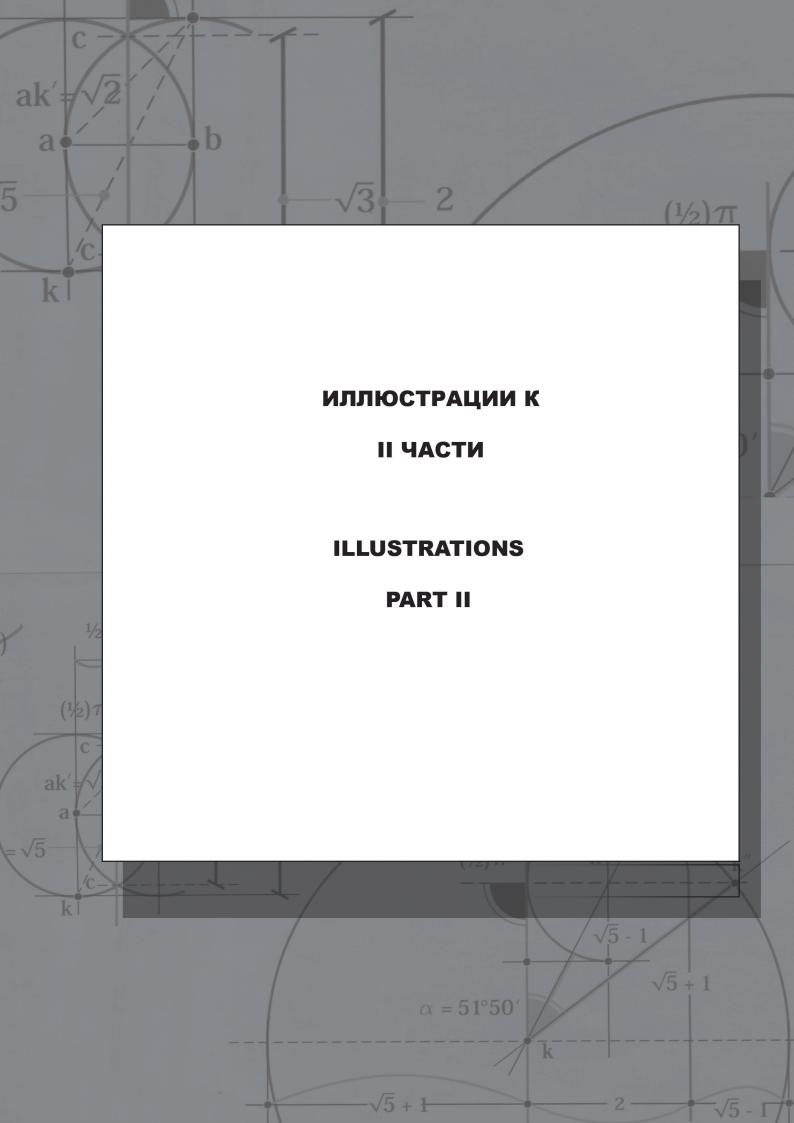
Соединяются тетраэдры гранью равностороннего "золотого" треугольника. Его стороны суть 1, Φ , (случай major) или 1, $\sqrt{\Phi}$ (случай minor). 1/ Если двойники соприкасаются *певыми* ребрами равносторонней грани, заключенный между ними тетраэдр – *певовращающий* (в пространстве minor это тетраэдр $C_{(-)}$, в пространстве major – тетраэдр $D_{(-)}$). 2/ Если соприкасаются *правые* ребра равносторонних граней, пространство между тетраэдрами-близнецами есть тетраэдр *правовращающий* (minor- $C_{(+)}$, или major- $D_{(+)}$).

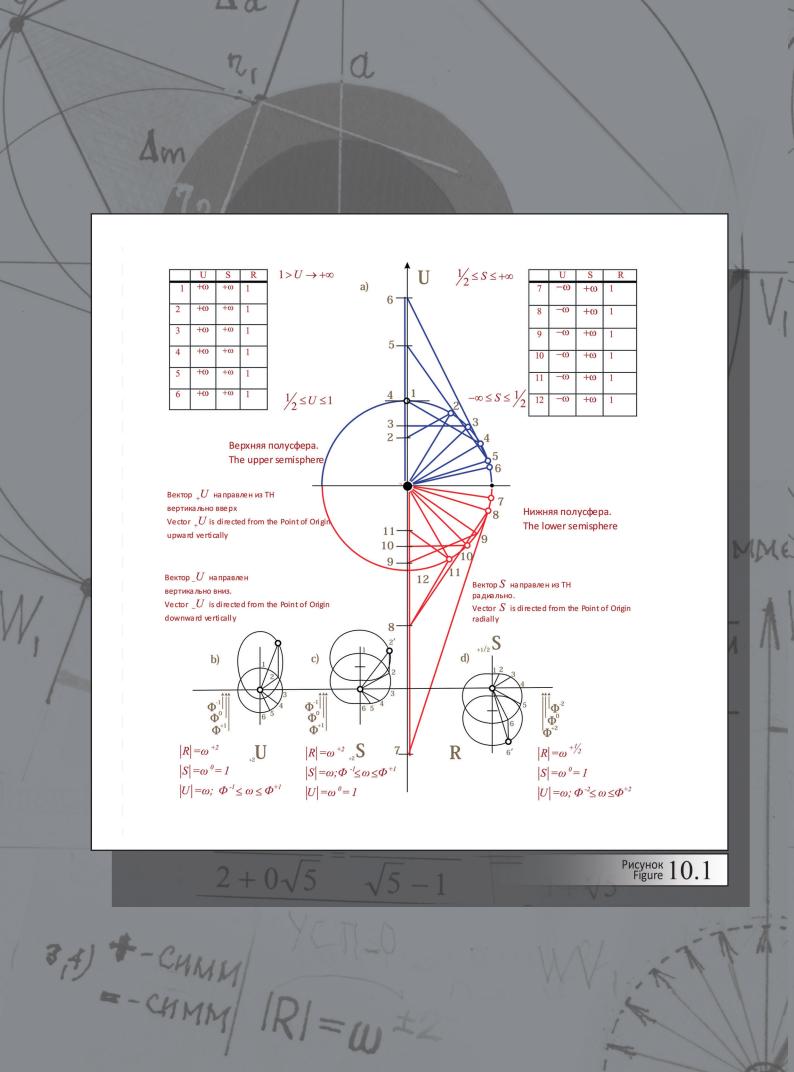
Тетраэдры A, B имеют плоскость зеркальной симметрии. Тетраэдры C, D зеркальной симметрией не обладают и поэтому могут строить спирали левовращающие и правовращающие (рис.14,1a, 15.1-2).

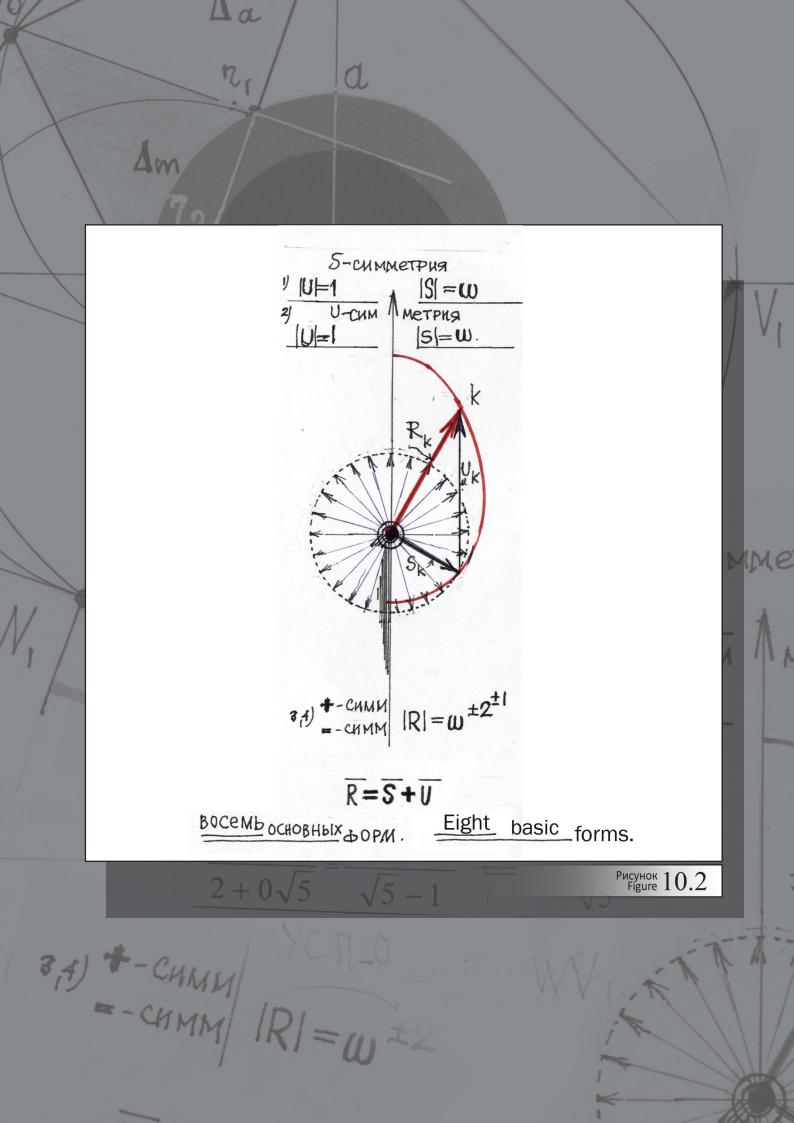
В пространстве чередующихся слоев minor и major следует выделить шестигранную призму: блок из *тридцати шести* тетраэдров. Из них *двенадцать* (шесть тетраэдров minor и шесть тетраэдров major) составляют ядро этого блока — модуль пространства симметрии подобий (ПСП) — «A-pom6» 14 (рис. 13,1). Каждый из двенадцати тетраэдров «A-pom6» можно разбить на два тетраэдра, A и B. Это расчленение можно бесконечно продолжать. Пространство каждого тетраэдра погружается в собственную глубину. Это цепь иерархий, объединенная ритмом $\sqrt{\Phi}$. Она устремлена и в величины бесконечно малые, и в бесконечно большие. В целом же, **структура «A-pomбов» — это два одинаковые, встречно опрокинутые и вложенные друг в друга пространства симметрии подобий.**

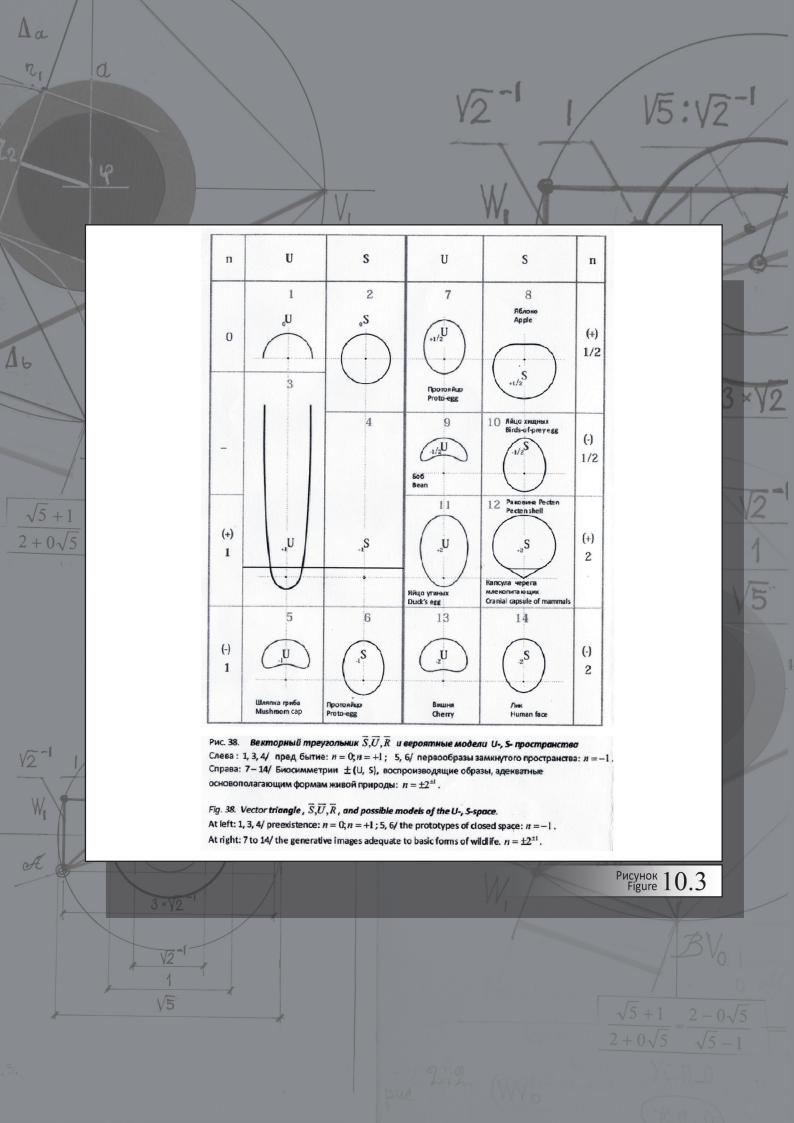
 $^{^{13}}$ Прямоугольная трехгранная призма, основание которой — равносторонний треугольник, при любых пропорциях вертикальной грани делится на три равновеликих тетраэдра. Два — друг другу тождественны, они имеют, каждый, плоскость симметрии и взаимно зеркально опрокинуты (расположены основаниями вверх и вниз). Третий тетраэдр плоскости симметрии не имеет. Он заполняет остальное пространство. Так как тетраэдры одной высоты h, а объем трехгранной призмы $V = F \times \frac{1}{3} h$, все три тетраэдра имеют равный объем.

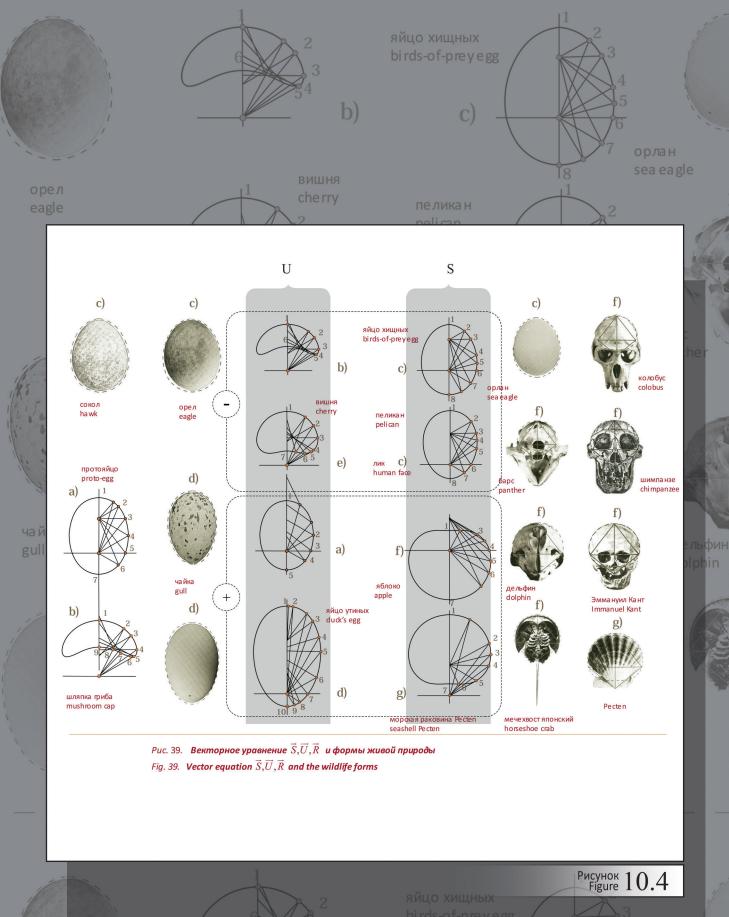
¹⁴ И. Шевелев. Другое пространство. Авенир-Дизайн., Кострома. 2010

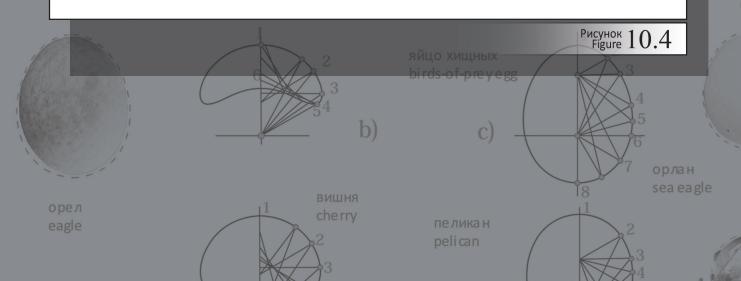












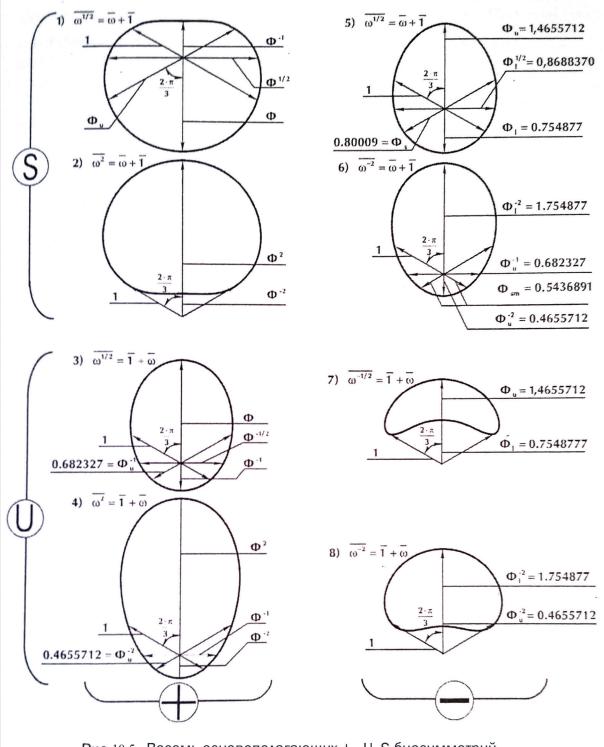
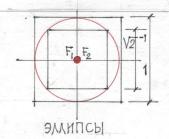
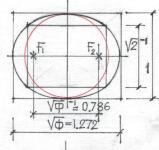


Рис. 10.5 Восемь основополагающих +,-,U, S биосимметрий Eight fundamental forms in biosymmetry: +,-,U, S

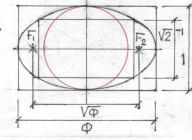
1



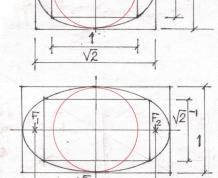
2.



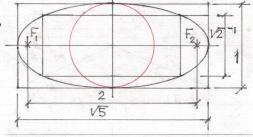
3.



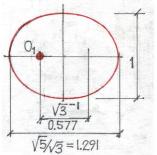
6.



8.



F₂ 4.



протояйцо

1-3;6-8. Метаморфозы эллипса

$$0 \le F \ F \to \infty; \ ^{\mathrm{b}}/_{\mathrm{M}} \to \infty$$

- 4. Исчезновение эллипса при F_1 F_2 = Б.
- 5. Протояйцо: $_{-1}$ **S** $\equiv _{-1/2}$ **S**
- 1-3; 6-8. Metamorphoses of the ellipse

$$0 \le F \ F \to \infty; \ ^{\mathrm{b}}/_{\mathrm{M}} \to \infty$$

- 4. Disappearance of the ellipse when F_1 F_2 = F_2
- 5. Protoegg: $_{-1}$ **S** \equiv $_{-1/2}$ **S**

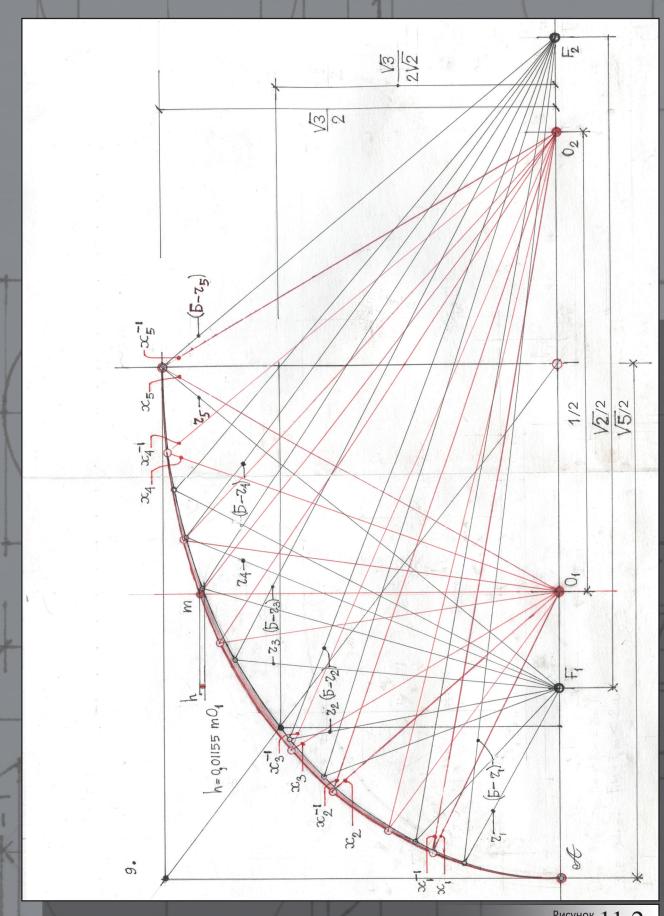
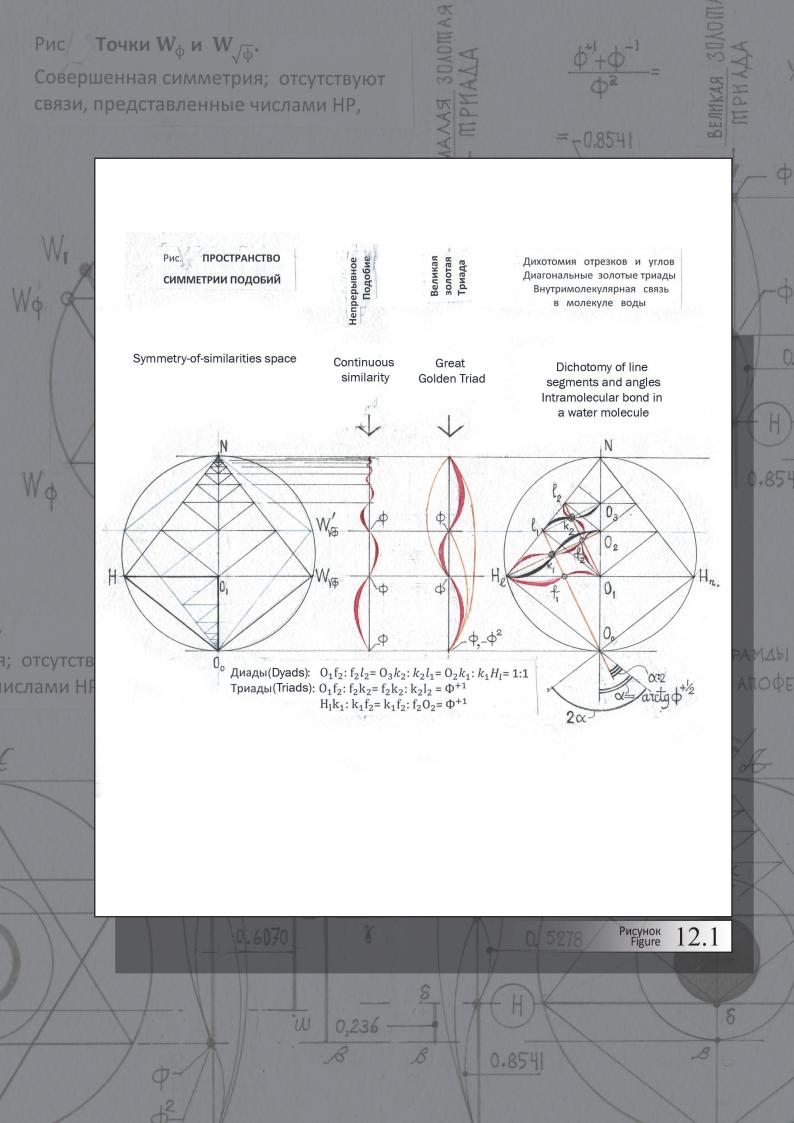


Рисунок 11.2

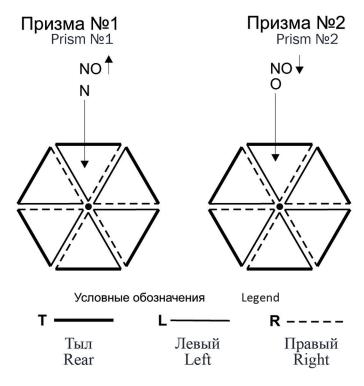


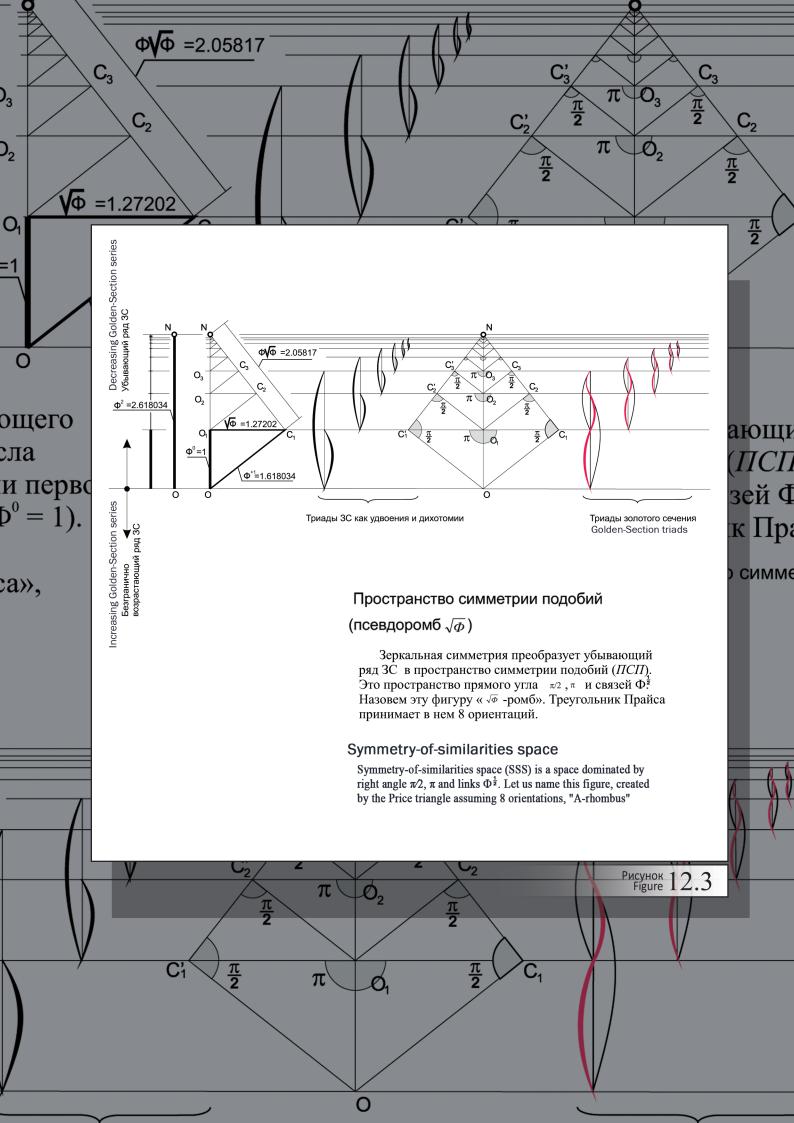
Соединяются одноименные призмы

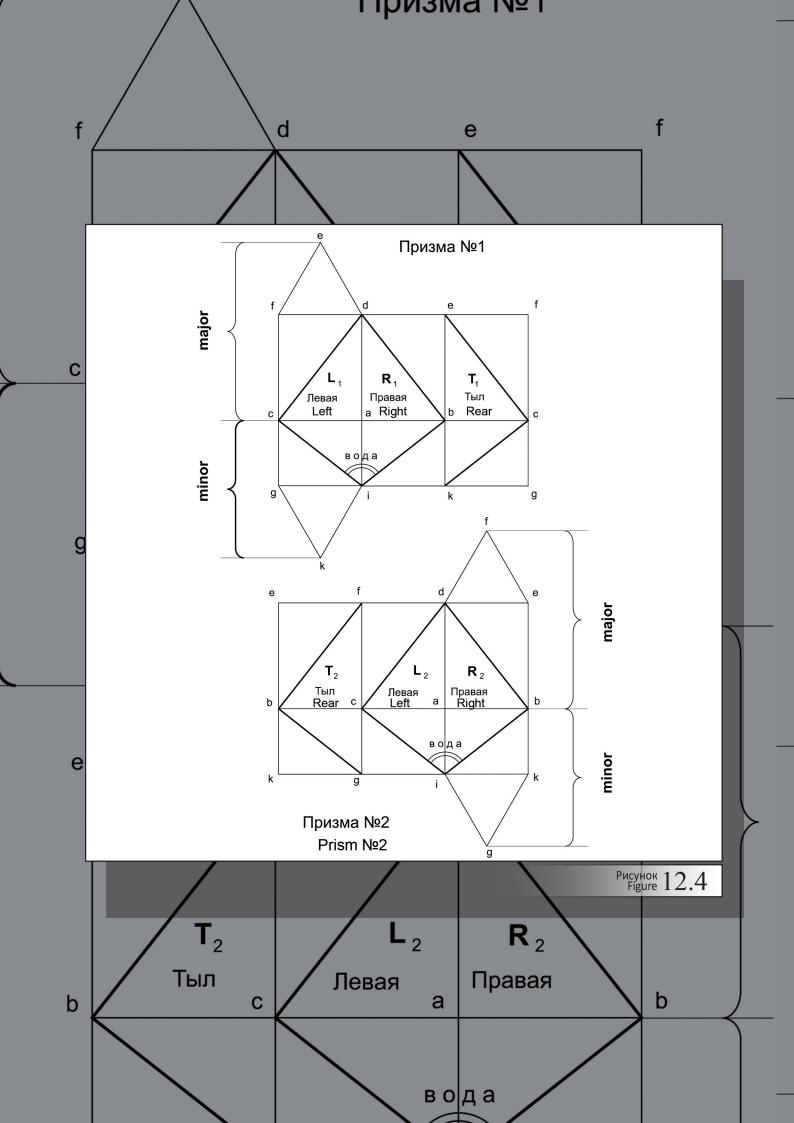
1←		
1	2	3
$L_1 \leftrightarrow T_1$	$L_1 \leftrightarrow R_1$	$L_2 \leftrightarrow$

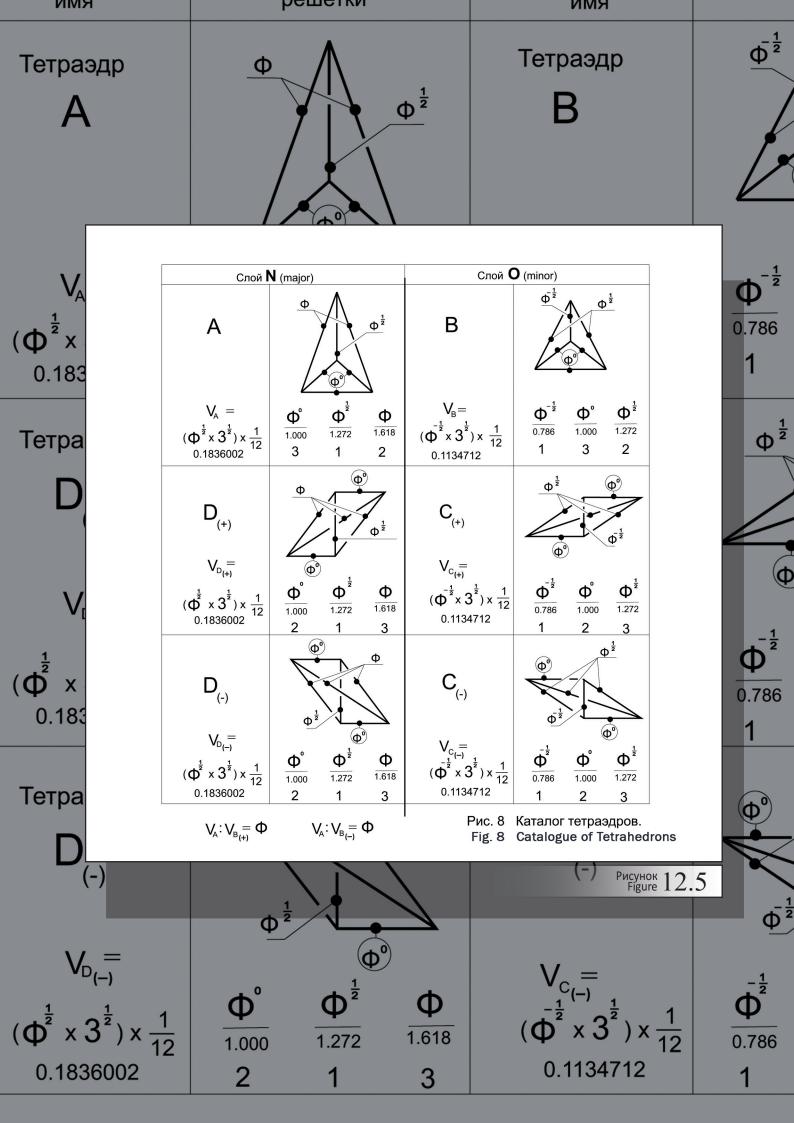
Правильное соединение граней одноименных и разноименных призм Correct blocking of tetrahedrons

Соединяются одн	призмы	Cognominal prisms		ms	
		1↔1		2↔2	
		1	2	3	4
		$L_1 \leftrightarrow T_1$	$L_1 \leftrightarrow R_1$	$L_2 \leftrightarrow R_2$	$R_2 \leftrightarrow T_2$
Соединяются разн	оименные	призмы	Heteronymous prisms		
	5	6	7	8	9
	$L_2 \leftrightarrow R_1$	$R_2 \leftrightarrow L_1$	$T_1 \leftrightarrow T_2$	$T_2 \leftrightarrow R_1$	$L_2 \leftrightarrow T_1$



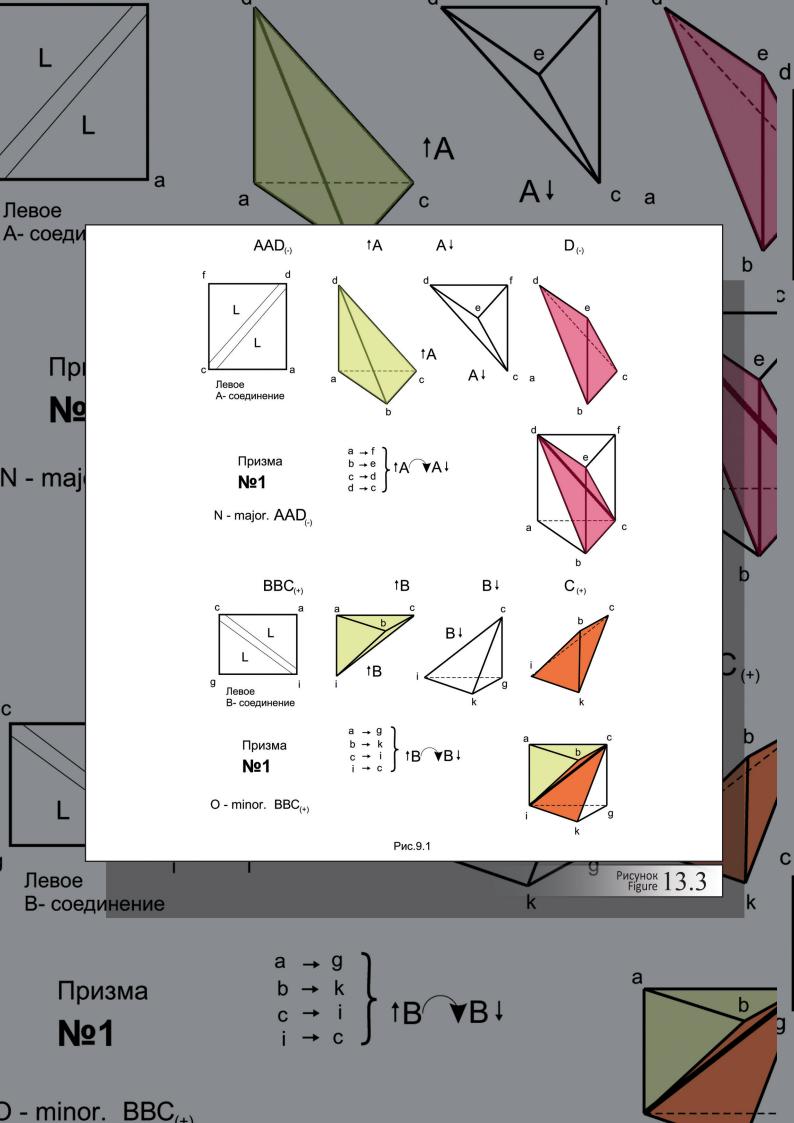


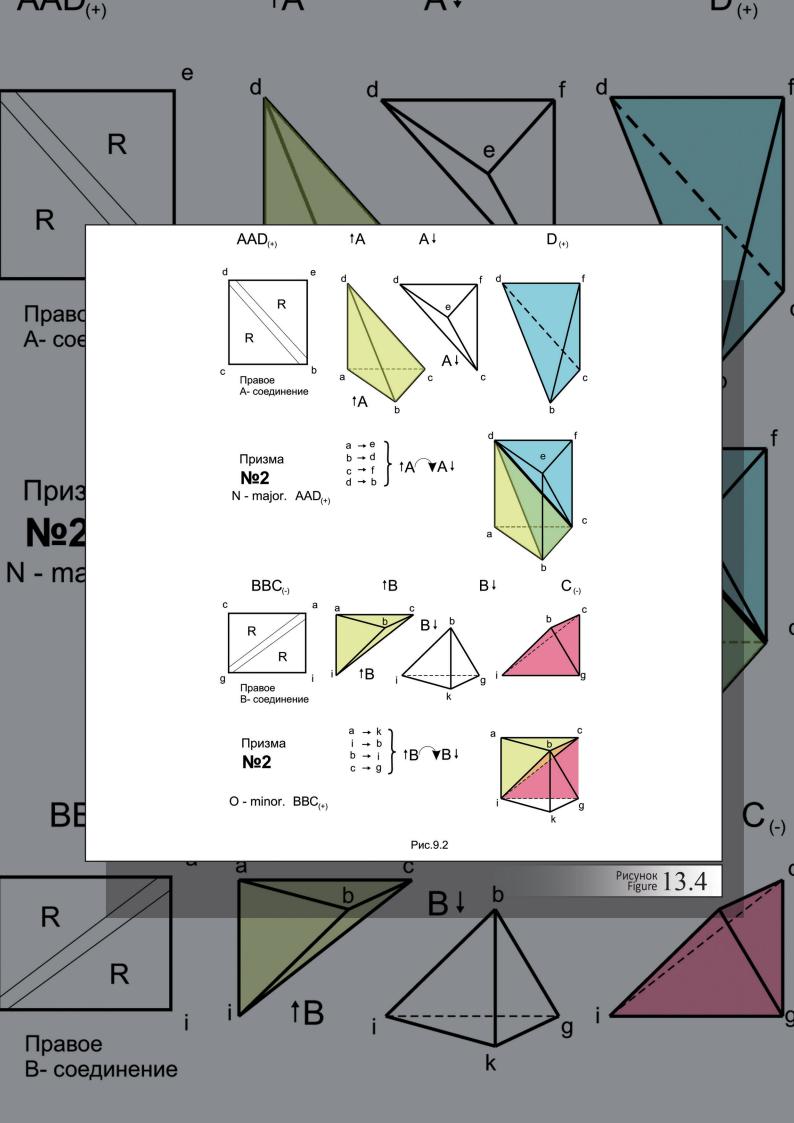


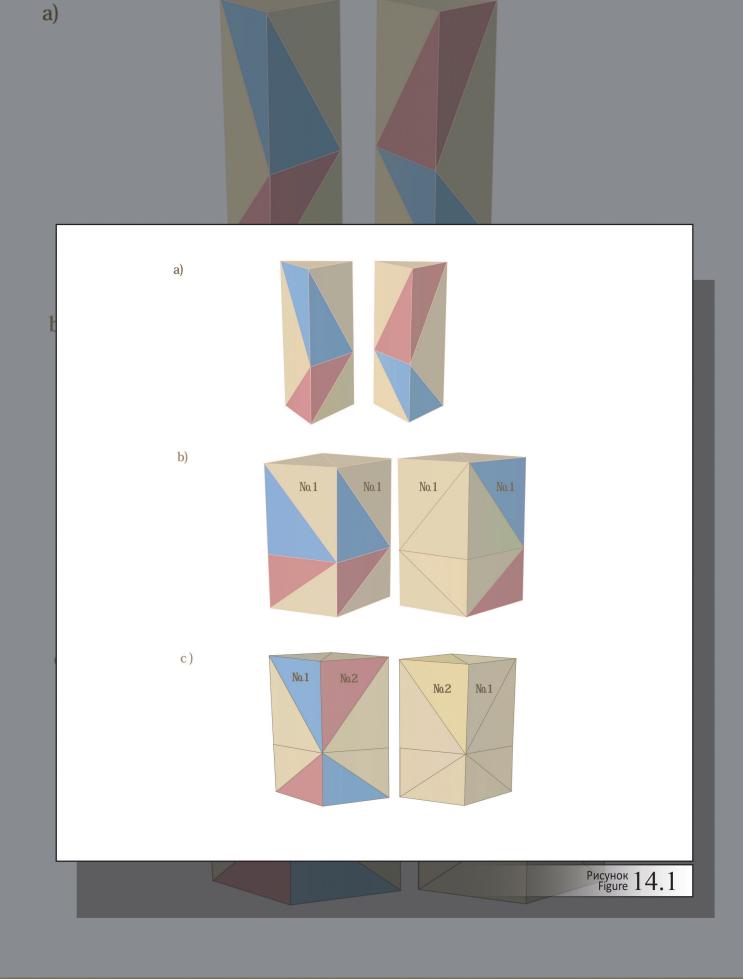


и А, ₍₊₎D, ₍₋₎D, (2, **major)** a/ Общий вид и составляющие элементы. b/ два тетраэдра В и один ₍₊₎C, или два тетраэдра А и один ₍₊₎D — правовращающая структу c/ два тетраэдра В и один ₍₋₎C, или два тетраэдры А и один ₍₋₎D — левовращающая структур

Fig. 24. A trihedron prism and its constituent tetrahedrons $B_{r,(+)}C_{r,(-)}C$ (1, the minor one) and $A_{r,(+)}D_{r,(-)}D_{r,(-)}D_{r,(-)}D_{r,(-)}C$ (2, the major one)







Puc. 29. **Блокировка по вертикали**

- a/ двухслойная призма minor-major. Структуры №1 и №2 зеркальны.
- b/ двухслойная спаренная призма № 1 № 1.
- с/ двухслойная спаренная призма № 1 № 2.

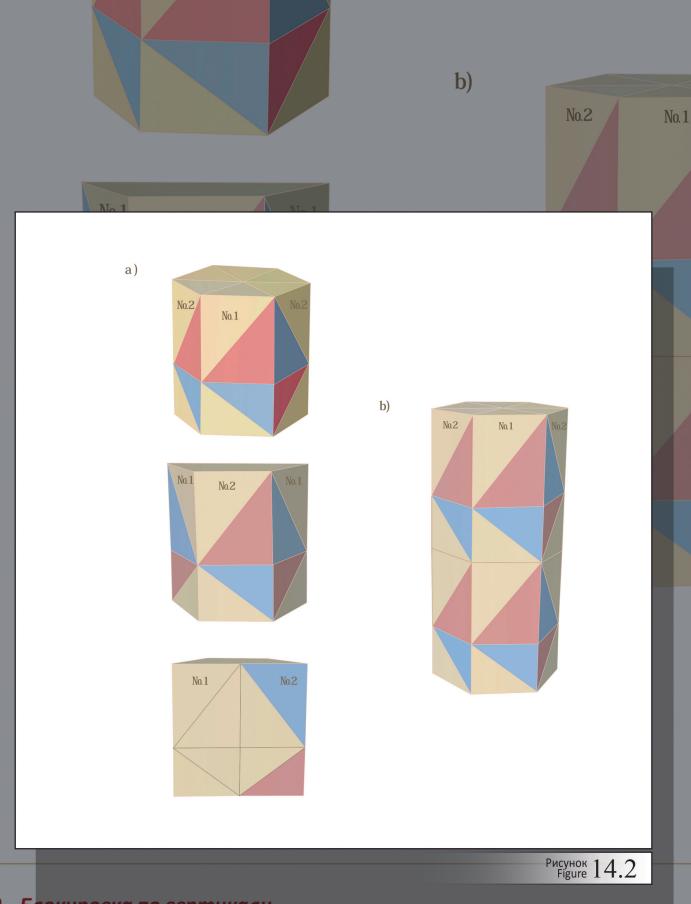


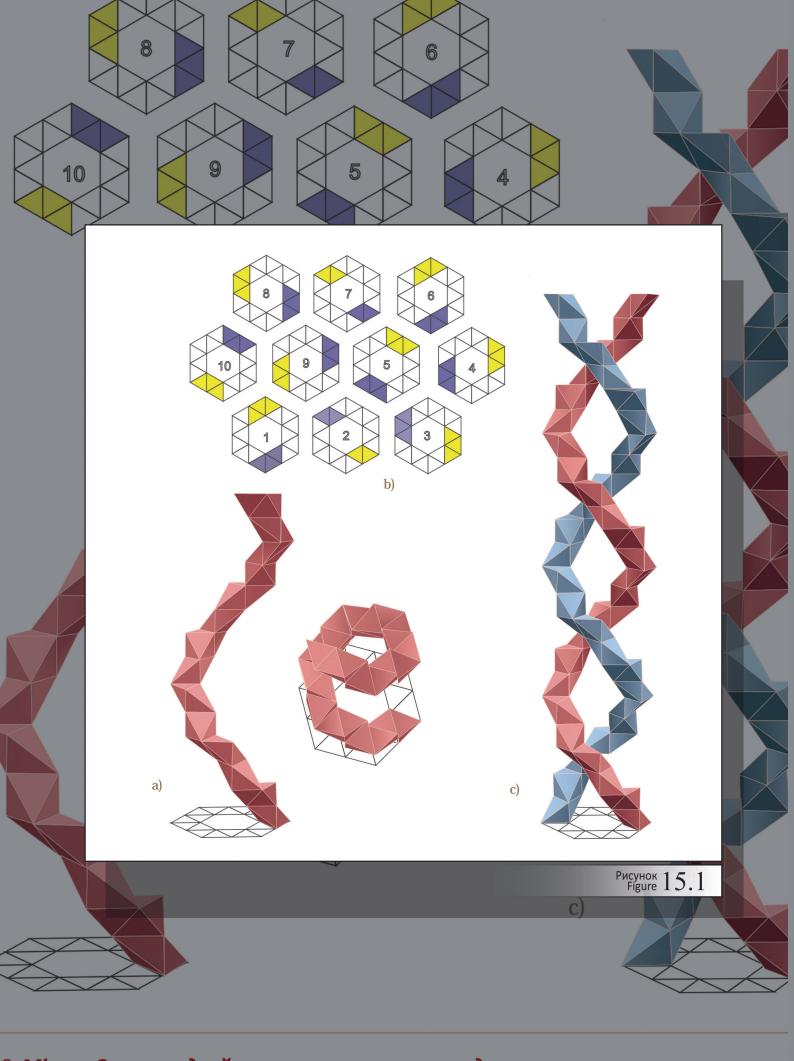
Рис.30. Блокировка по вертикали

Шестигранная призма minor-major составлена из трехгранных призм № 1 и № 2 а/ Двухслойная структура.

b/ Четырехслойная структура.

Fig. 30. Vertical interconnection

A hexahedral minor/major type prism composed of trihedrons 1 and 2 a/ Two-layer structure



6. **Minor. Спираль двойная правильная правая, десяти витковая** ктурный аналог В-спирали Крика-Уотсона (молекула ДНК).

биний вил спирали - h/ План расположения по слоям элементов блокировки: это «л

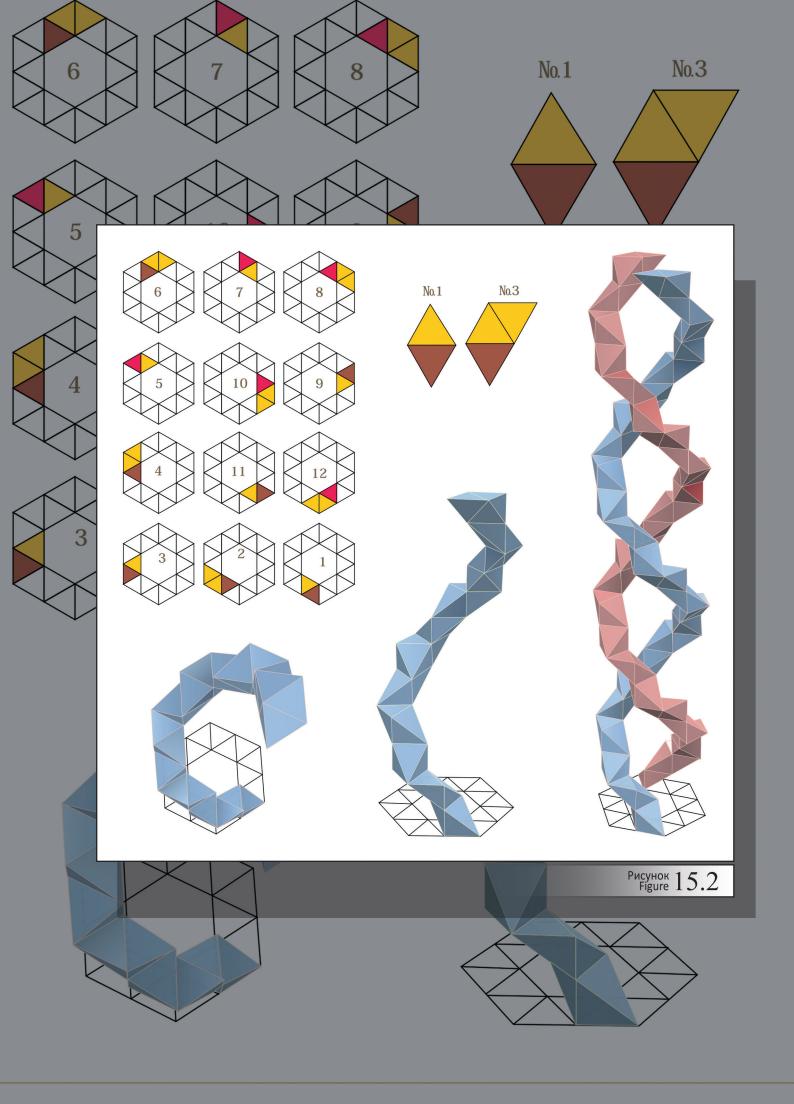


Рис. 35. **Minor. Спираль двойная правильная левая, двенадиати витковая**

ИНСТРУМЕНТ МАСТЕРА

Число подразумевает соизмерение. Число всегда суть пара чисел.

Сопоставить охвату ладони размер камня или обломка дерева; соизмерить прыжок опасного зверя и бег собственных ног; осознать феномен геометрического подобия, чтобы рисовать, создавать символы, — вот инструменты мозга. Язык знаков — краеугольный камень цивилизации. Кисть руки, шаг и стопа стали эталонами соизмерения. Соизмерение есть исток информации об окружающем мире, — и потому "Мир есть число". Единица — код симметрии пар \equiv Вторая теорема Пифагора — не плод воображения теоретиков, исследователей проблемы гармонии. Это сама история цивилизации. Эпоха расцвета сакральных знаний оставила тому убедительные, неопровержимые доказательства.

Циркуль музея терм в Риме – рабочий инструмент мастера – и пропорциональное дерево Парфенона.

Пропорциональный циркуль, как его ни раскрыть, — это два обратных числа $\frac{1}{\alpha} \Leftrightarrow \frac{\alpha}{1}$: запечатленная $\alpha v \alpha \lambda o \gamma \iota \alpha$, т.е. пропорция. Раздвоенный раздвигающийся стержень раскрывается и создает два подобных равнобедренных треугольника. Расстояния между острыми концами двух пар заостренных ножек есть третьи, невидимые стороны — основания двух подобных треугольников. Циркуль — это колоссальная технология, в которой следует хорошо разобраться. Она требует высокой культуры, владения нужными операциями в нужном месте: необходимы чувство и понимание смысла и осознанная последовательность действий. То, как работает циркуль Музея Терм в Риме в создании размерно-пространственной структуры Парфенона и то, как понимает роль пропорции в творческом процессе и применяет пропорции (если применяет!) современная архитектурная школа — не обнаруживает сходства. Оставить будущему преподанный мне самим Фидием урок, показать как работает Мастер, мой долг.

Нам известны четыре античные пропорциональные циркуля. ¹⁵ Два установлены на удвоение, 1/2 = 0.500. Третий, прославленный, хранящийся в Неаполитанском Музее Искусств, установлен на золотое сечение, $1/\Phi = 0.618$. **Ч**етвертый — циркуль Музея Терм в Риме, воспроизводит отношение ($\sqrt{5}$ -1)/ $\sqrt{5}$ = 0.553.

Циркуль "золотой", неаполитанский, найден в мастерской *скульптора* при раскопках Помпеи, и в нем поэтому многие видят удобный инструмент гармонизации формы. Но это еще не истина. Искусство неотделимо от образных ассоциаций. Золотое сечение — начало без личностное, с образными ассоциациями не связанное. Оно — всеобще. Греки между тем полагали своих Богов во всем подобными людям, но существами многократно более могущественными. Ключ к универсальной гамме пропорций, дающий возможность простыми методами ассоциировать в камне образ десятикратного человека дает циркуль Музея Терм в Риме. (рис 16.1). Он включает, как один из вариантов связи, золотое сечение. Возможно, что циркуль Терм точно повторил циркуль, использованный строителем Парфенона.

Правила применения любого пропорционального циркуля элементарны. Приемов всего два:

¹⁵ Брунов Н.И. Пропорции античной и средневековой архитектуры. М. 1935

1/ Первый: Соизмерение величин. При движении размеров от большего к меньшему исходную величину задает укол длинных ножек; искомую находит укол коротких ножек. При движении от меньшего размера к большему исходную величину определяет раствор коротких ножек, искомую – раствор длинных.

2/ Второй: Удвоение величин поворотом циркуля на угол в 180°.

Каков эффект этого простого приема? *Одно соизмерение* плюс *одно удвоение*, осуществленные пропорциональным циркулем Музея Терм в Риме, строят шкалу пропорций, необходимую и достаточную для приведения размерной структуры шедевра, во всех его деталях, к динамическому равновесию. Шкала пропорций, созданная этой процедурой, представлена на рис. 16.1. Изображен отрезок *bc'=* 1.447. Он разделен точками *a, c,* на три части: *bc=* 0.553, *ac=* 0.447, *ac'=*0.447

Воспроизведена в исчерпывающей полноте *золотая октава взаимопроникающих подобий системы двойного квадрата* 16 , необходимая и достаточная зодчему:

1) тождество	<i>ca: ac'</i> = 1.000 = 1/ 1		
2) удвоение–дихотомия	<i>ca: cc'</i> = 0.500 = 1/	2	
3) золотое сечение, или			
"первая константа "	$cc': c'b = (0.447 \times 2):1/447 = 0.618 = 1/\Phi$		
		2	
4) квадрат золотого сечения	bc: bc' = 0.382	1/Φ ²	
5) полу-золото	<i>ac': bc =</i> 0.309	Φ ⁻¹ /2	
6) двойное золото	<i>ac : cb =</i> 0.809	Φ/2	
7) пятеричная симметрия	<i>ca: ab =</i> 0.447	$1/\sqrt{5}$	
8) "вторая константа "	<i>cc': ab =</i> 0.894	$2/\sqrt{5}$	

Золотая октава — результат сопоставления числу **1** *трех чисел* (Φ , $\sqrt{5}$, **2**). Так в оптике и живописи три цвета, соединяясь вместе, дают "свет"— цвет белый (1), а смешиваясь между собой, образуют все остальные цвета. Аналогия полная. Больше того, восемь упомянутых пар чисел подобны восьми звуковым ступеням октавы в музыке.

Иметь инструмент и владеть инструментом — не то же самое. Пропорция есть соответствие между членами всего произведения и его целым по отношению к части, принятой за исходную. Пропорция есть " $\alpha \nu \alpha \lambda o \gamma \iota \alpha$ ". Парфенон уподоблен десятикратному человеку. Рост "хорошо сложенного мужа" — mecmb футов. Стопа составляет 1 фут, ее длина равна высоте головы и шеи, mamb футов приходятся на высоту mena, измеренную от основания подошвы до яремной впадины в основании шеи. Греки назвали ствол колонны (символ mamb стройности, mamb и mamb в дорическом ордере в конструктивном смысле — прокладка на стыке камней архитрава. А поскольку это так, и поскольку, как утверждал Сократ, сын каменотеса, происходящий из рода Дедала и в молодости сам каменотес и скульптор, — "mamb связью служат средние mamb mamb пропорцию Парфенона определило число mamb среднее чисел 1 и 5.

1:
$$\sqrt{5} = \sqrt{5}$$
: 5 = 0.447

И, что крайне важно отметить, полагая образом силы и красоты тело человека (1/5), мастер подчинил этому отношению не только соразмерность ствола колонны, но и распространил эту связь на соразмерность колонны в целом, включая сюда капитель.

¹⁶ И. Шевелев. Золотое пространство. Кострома. Промдизайн-М., 2006.- стр.26-27 и 42-49.

А среднее чисел 1 и 5, связь 1: $\sqrt{5}$ распространил по аналогии на многие другие части храма. Начиная от связи ширины стилобата в 100 футов с его длиной, и кончая малыми деталями: высотой плиты карниза, высотой шейки капители, глубиной каннелюр. Соединил не однозначно, а гениально многообразно, как это и свойственно природе. Греки понимали силу полифонии. Главная тема, пятеричная пропорция, $1/\sqrt{5}$ = 0.447 применена 6 раз из 11 необходимых; вторая, золотая, четыре раза, причем весьма своеобразно. Там, где необходима контрастная связь высоты ствола колонны с шириной стилобата и там, где необходимо усилить мощь колоннады (на углах храма), мастер дважды применил полузолото, $1/2\Phi = 0.309$. Во первых как отношение высоты ствола колоны к ширине стилобата. И второй раз как отношение укороченного шага угловой колонны к высоте ствола. И связал связью $\Phi/2 = 0.809$ (двойное золото) полную нагрузку на стволы колонн (общую высоту капители, антаблемента и фронтона) с высотою ствола колонны (рис. 16.1, 3, 4). Третий мотив — вторая константа $2/\sqrt{5} = 0.894$ соединила укороченный шаг угловых колонн с высотой антаблемента (рис. 16.4).

Крушение "ниспровержения" системы двойного квадрата.

"Установленная Вами связь частей и целого в храме Парфенон на афинском Акрополе убедительна, точна, потрясающе красива!" — такие слова могли бы сказать мне добросовестные профессионалы-оппоненты. Но они как воды в рот набрали. Словно публикаций не было. 17 Зато заметили неточности. Там, где я вижу число $1/\sqrt{5}$ =0,447 (соразмерность стилобата, отношение диаметра колонны к шагу колонн, членение антаблемента на архитрав, фриз и карниз и т.д.), точные обмеры обнаруживают целочисленные отношения. Иногда 4:9=0,444, иногда 31:69=0.449. Поэтому оппоненты верят в целые числа. И, отчасти, в Золотое сечение. Но отказываются верить логике античного мира, которая явно, однозначно, раз и навсегда отождествила понятия аналогия (сходство) и пропорция (число). Академическая наука (теория и история архитектуры), отказала в наличии интеллекта и великому Фидию и всем его сподвижникам (как и египтология — строителям пирамид), вменяя им вместо светлого разума бессмысленные манипуляции целочисленными отношениями, взявшимися откуда-то и неизвестно зачем.

Чтобы установить истину, я задаю два вопроса: 1. Почему высота ствола колонны Парфенона равна 31 футу (это заметил Андрей Чернов), а не, к примеру, 30 или 36 футам? 2. Как мог мастер воплотить в камне свой великий геометрический замысел руками многих десятков каменотесов и других строителей, не пользуясь общепринятым эталоном меры? И сам отвечаю на них.

- 1. Парфенон 100 футовый храм (100 футов ширина стилобата). 31 фут в 100 футовом храме возник потому, что, во первых, 31 + 69 = 100, и во вторых, $31:69 = 1/\sqrt{5}$. Связь целых чисел 31:69 = 0.449 дает плотное приближение к числу 0.447. Если помнить, что любая архитектурная форма есть геометрия, то очевидно: перед нами геометрия. Отношение стороны двойного квадрата к его диагонали. Таков прямоугольный план стилобата, плиты, на которой были определены и начерчены оси колоннад, определены местоположение каждой колонны и каждой стены храма.
 - 2. Ответ на второй вопрос не столь лаконичен. Здесь два обстоятельства.

 $^{^{17}}$ Книга Геометрическая гармония, 1963. Журналы Наука и жизнь №8 1965, Архитектура СССР №3 — 1965, и т.д.

Архитектура — не бухгалтерия. Впечатление гармонии достигается учетом особенностей восприятия. Архитектурным формам свойственно дыхание. Колонна утоняется (ее диаметр вверху уменьшается (энтазис) и образующая ствол линия искривляется, чтобы казаться прямой. Стилобат - изогнут, он повышается к центру кривой; угловые колонны толще рядовых, и т.п. Пропорция Парфенона необходимо раздвоена. Число колеблется, как звучащая струна. Поэтому форма живет. Ширина абака рядовой колонны изменяется в пределе нескольких сантиметров. Разница в толщине рядовой и угловой колонны равна 42 мм. ¹⁸

Второе. Строительный процесс без приложения меры — немыслим. Мера — язык, объединяющий людей друг с другом и с материалом. Число $1/\sqrt{5}=0,447$ имеет два великолепных целочисленных приближения. Первое повышает контраст на - 0.003, это " $\sqrt{5}$ -диез", 4:9 = 0,444 . Второе снижает контраст на + 0.002, " $\sqrt{5}$ - бемоль", 31:69 = 0,449.

И мы видим: переход от геометрической идеи взаимопроникающих соразмерностей, связанных цепью аналогий к удобным для строителей *целым числам* не был для мастера внезапно возникшей преградой. Мастер блестяще использовал это раздвоение, и обнаружил в нем средство одухотворения и очеловечивания камня.

Парфенон — это, во-первых, идея, образ; во-вторых, это материал (пентелийский мрамор тепло-телесного цвета, ассоциирующий плоть); в-третьих, это воплощение — метод $\alpha v \alpha \lambda o \gamma i \alpha$.

Совершенная единица природы— человек. Отсюда и появился Парфенон, гимн пятеричной симметрии, жизни. Гимн телу человека и Золотому сечению, в нем сущему

$$\sqrt{5}/1 = (\frac{\Phi}{1} + \frac{1}{\Phi})/1.$$

Форма Парфенона спонтанно явила образ метафизической Единицы $\frac{\Phi}{1} + \frac{1}{\Phi}$, которой посвящена моя книга, воплотив Единицу в мрамор колоннады совершенного дорического храма. Храм создан по образу и подобию человека. В творческом акте созидания господствует идея. Стало быть, "вначале был $\lambda o \gamma o \sigma$ ": Слово-число.

Мир есть число! И без него ничто не начало быть, что начало быть.

Пропорциональный циркуль Музея Терм в Риме одним лишь измерением исходной величины и двумя уколами обратных ножек строит восемь числовых отношений — полную "октаву созвучий", достаточную для определения размерной структуры храмов Афинского Акрополя. Лейтмотив связи $(1/\sqrt{5})$ =0.447 объединил размеры частей и целого в мужественном Парфеноне; лейтмотивом пропорции женственного Эрехтейона ¹⁹ служит отношение $2/\sqrt{5}$ = 0.894.

Инструмент, позволяющий строить друг из друга состоящие прямоугольники, (гамму соразмерностей) и тем создать ощущение гармонии, сплотить части в целое востребован вольно и невольно во все времена. Античность создала циркули. Средние века породили мерную трость. ²⁰. Обломок такой трости найден археологической экспедицией А. Монгайта в середине XX века в древнем Новгороде, в культурном слое начала XII века.

 $^{^{18}}$ Циркуль Музея Терм эту разницу проясняет: в средне расчетную толщину диаметра $\frac{1.901+1.943}{2}=1.922$ м введены две поправки, 13мм и 29 мм.. 13:29мм = $1/\sqrt{5}$. Рядовая колонна стройнее, ее диаметр 1, 914м - 0.013 м = 1.901 м; угловая колонна утолщена, ее диаметр 1,914 м + 0.029 м = 1.943 м.

 $^{^{19}}$ Шевелев И. Ш. Принцип пропорции. М., Стройиздат. 1984.-стр.96-106.

 $^{^{20}}$ Современная архитектура также ищет комбинаторные стандарты. Ключ – в нашем исследовании.

По существу это парная мера: два пропорциональные циркуля, составленные вместе. Ибо из четырех граней новгородской мерной трости одна пуста, а по обе от нее стороны - на трех остальных гранях нанесены шкалы размеров, попарно сопряженные. Первая пара воспроизводит двойное золото $\Phi/2=0.809$. Это сажени мерная (размах рук в стороны) и тмутараканская (двойной шаг). Вторая пара воспроизводит отношение $1/\sqrt{2}=0.707$. Это — сажени тмутараканская и новгородская косая. С этой или подобной ей мерной тростью связаны пропорции храмов средневековой Руси и храм Вознесения в Коломенском под Москвой. ²¹Мерная трость — это орудие не только замысла (как и циркуль), но и инструмент для работы на строительной площадке. Проблема несоизмеримости стороны и диагонали квадрата и двойного квадрата тем самым автоматически снята. Вопроса: как мастеру, руководя строительством, переходить от геометрии к целочисленным отношениям? — не возникает. Задачу решает равный или удвоенный счет единиц, отсчитываемый по двум геометрически сопряженным шкалам.

Интересно осмыслить философию Единиц. Связать происхождение циркуля Терм с той истиной, что природа Единицы – двоична.

Единица
$$\Phi$$
 = $\frac{1}{2}\sqrt{5} + \frac{1}{2}1$
Единица $\sqrt{5}$ = $\Phi/1+1/\Phi$;
Единица 1 = $\Phi/1-1/\Phi$

Если Единицу 1 разделить на две части *равные*, появятся числа $1=\frac{1}{2}+\frac{1}{2}$. Циркуль Музея Терм, **0.553**, есть результат деления единицы 1 на две *неравные* части в отношении динамичном; **1** = **0.553** + **0.447**. Логично допустить: "вторая половина" единицы 1, пропорциональный циркуль 0.447, установленный открыто на теме "человек", также существовал. Одним соизмерением и уколом обратных ножек в обе стороны: $(1+\sqrt{5}^{-1})$ и $(1-\sqrt{5}^{-1})$ воображаемый циркуль 0.447 рисует в точности ранее представленную нами картину: *золотую октаву*, восемь пропорций, необходимых мастеру (рис. 16.1). И замечательно то, что циркуль 0.447 реально существовал, причем за 3200 лет до рождения Фидия! В образе парной меры. Мы видим две трости, сопряженные по длине как 1 и $\sqrt{5}$ в руках строителя первой ступенчатой египетской пирамиды (Рис. 16.3) зодчего Хеси Ра. На искусно вырезанном рельефе, на деревянной панели, поразительно сохранившейся почти пять тысячелетий 22 .

Все четыре известные нам пропорциональные циркуля и пятый, воображаемый, но вполне реальный циркуль (жезлы Хеси Ра) происходят из одного примитивного чертежа: двойного квадрата. И драгоценные, затаенные здесь отношения чисел, представляющие Φ -структуру как целое, были давным-давно материализованы и сохранены для будущего в вечном материале, граните. Я имею в виду пространство погребальной камеры фараона Хеопса, сердце самой грандиозной и загадочной пирамиды. Пол в камере фараона – двойной квадрат; торцевая стена воспроизводит вторую константу естественной геометрии, соразмерность $2/\sqrt{5}$. А разные комбинации, полученные сложением заключенных в гранях погребальной камеры размеров, определили наклоны облицовки всех десяти крупных пирамид священного комплекса в Гизе. Именно в диагональных

²¹ Первая половина XVI века. Там же. Стр.165-171.

 $^{^{22}}$ Связь длин мерных жезлов на резной панели, изображающей зодчего Хеси-Ра $(1/\sqrt{5})$ в тесной связи с пропорцией Парфенона, Золотыми пропорциями и двойным квадратом установлена мной и неоднократно опубликована в 1962-1963 гг.

сечениях, а не в сечениях по апофеме. Потому, что именно ребра, сомкнутые в вершине создают силуэт пирамиды, ее образ, читаемый на фоне неба. И именно с закладки углового блока (ребро) начинается практическое возведение облицовки. Обозначив буквой **Н** высоту пирамиды (от уровня платформы, на которой покоится облицовка, до точки вершины пирамиды), а буквой **В** проекцию ребра на плоскость платформы, находим эти диагональные сечения (рис. 16.6)

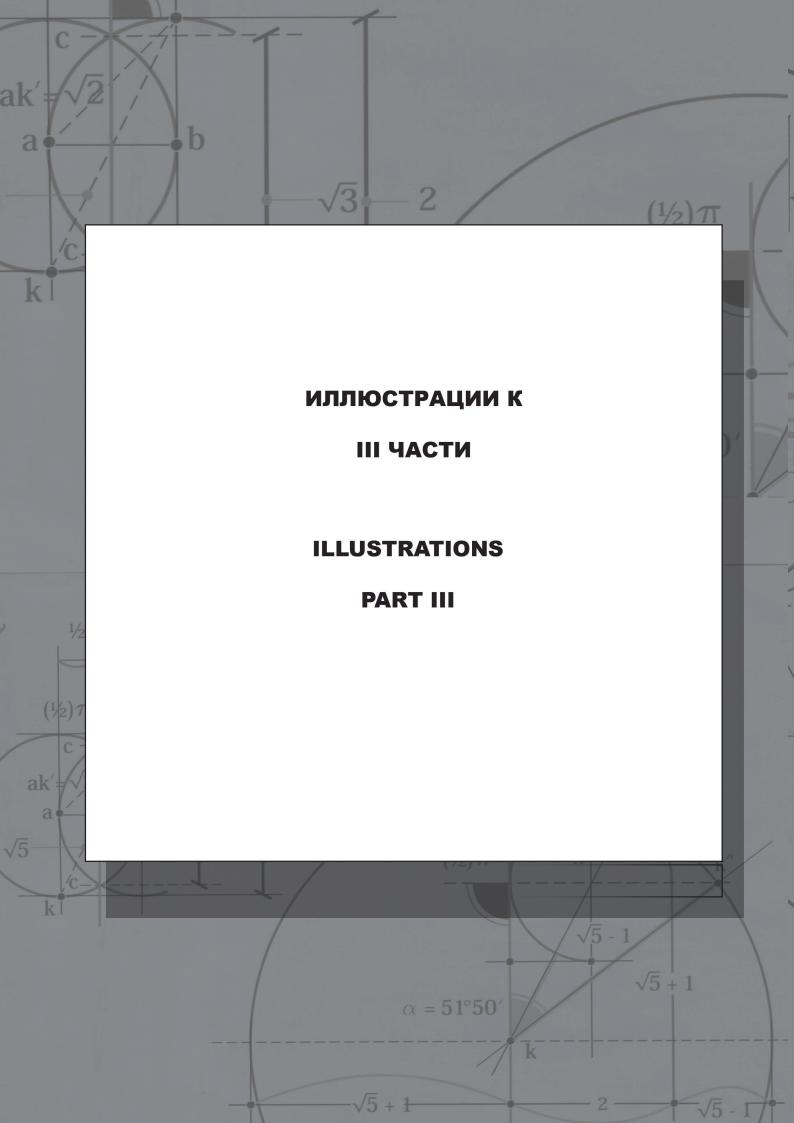
```
1/
       H:B = 1:1
                                    ромбоидальная Снофру (южн.), нижняя часть.
       H:B = 2
                     : (1+2)
                                    ромбоидальная Снофру (южн.), верхняя часть.
                     : (\sqrt{5} - 1)
2,3,4/ H:B = 2
                                    Хуни, Хеопса, Неусер-ре
5,6,7/ H:B = (2+2) : (\sqrt{5} +2)
                                    Хефрена, Нефер-ир-Каре и Пепи II,
       H:B = (1+2)
8/
                    : (2+2)
                                    Микерина
       H:B = (\sqrt{2} + 2) : (2+2)
9/
                                    Caxype
       H:B = (\sqrt{5} +2): (2+2)
10/
                                    Унаса
```

Глубоко поражает неисчерпаемая энергия творчества, таящаяся извечно в Двойном квадрате. Возникает естественный вопрос. Почему в тысячелетней истории возведения пирамид самой мудрой была Первая треугольная пирамида, и почему она, самая первая, скрывает в своей сердцевине неисчерпаемый смысл?

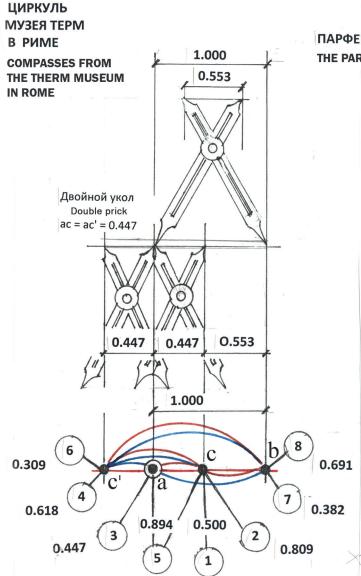
Почему этот смысл так похож на математическое сплетение констант и величин, Естественной геометрии? На образ трех помещенных друг в друге сфер, на ядро Единицы Ф-сфера, к которой ведут современные представления о структуре мира и отвлеченное рассуждение о природе числа? Мы столкнулись, вполне вероятно, с памятью Великой цивилизации. Как ни интересно знать, что это за Цивилизация, Земная ли Атлантида, или инопланетная, космическая, главная цель — это проникнуть как можно глубже всеми доступными интеллекту путями в идеи и знания, которые она в себе заключала.

Кострома. 14 октября 2014г.

²³ Подробнее см. И.Шевелев. Основы гармонии. М. 2009. Главы: На заре цивилизации, Античная пропорция, Парные меры Древней Руси.



 $\sqrt{5} + 1$



ПАРФЕНОН АФИНСКОГО АКРОПОЛЯ THE PARTHENON ON THE ATHENIAN ACROPOLIS

1. ширина стилобата	30.870m		
Stylobate width Длина стилобата Stylobate length	69.516M	Nº 3	

2. ширина стилобата Stylobate width высота ствола колонны Stylobate heigth 30.870_M 9.57 Nº 6

3. высота ствола колонны 9.570м column shaft height диаметр колонны (средний) 1.922м Column diameter (ave.)

4. высота ствола колонны Column shaft height 9.570_M шаг рядовых колонн Ordinary column spasing 4.295M Nº 3

5. Высота ствола колонны column shaft height шаг угловой колонны (сев.) Corner column spasing (North) 9.570_M 3.662M Nº 6

1.922M

6. диаметр колонны Column diameter высота капители Capital height 0.860m Nº 3

7. шаг угловой колонны (юж.) Corner column spacing (South) высота антаблемента 3.698_M 3.297m Nº 5 **Entablement height**

8. высота антаблемента Entablement height карниз Cornice фриз (архитрав) Frieze (architrave) 3.297_M 0.600_M 1.350M Nº 3

9. Высота капители Entablement height шейка Collar Эхин, абак Echinus, abacus 0.860_M 0,156_M 0,352m Nº 3

10. завершение (нагрузка на ствол) Entablatere (load on shaft) Капит.-антабл.-фронтон Capital + antablement + fronton Высота ствола . 7.735_M 9.570m Nº 2

11 глубина храм (в чистоте) Temple clear depth Парфенос Parthenon 13.363_M

Афины Athen 29.657 M Nº 3

Рисунок 16.1

 $\sqrt{5} + 1 = 2 - 0\sqrt{5}$ $2 + 0\sqrt{5}$

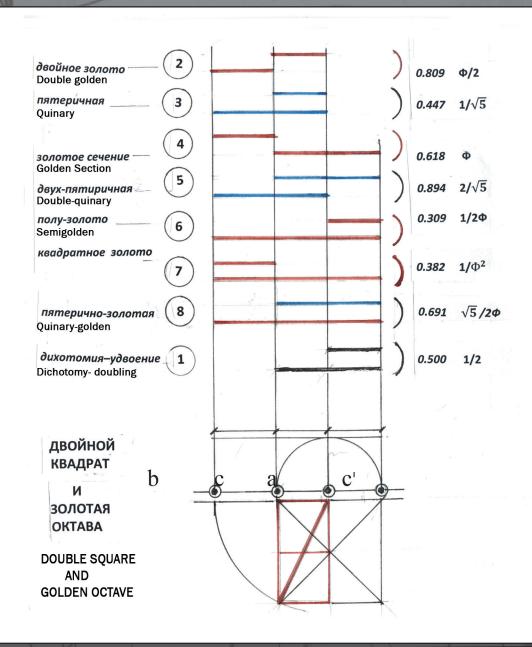
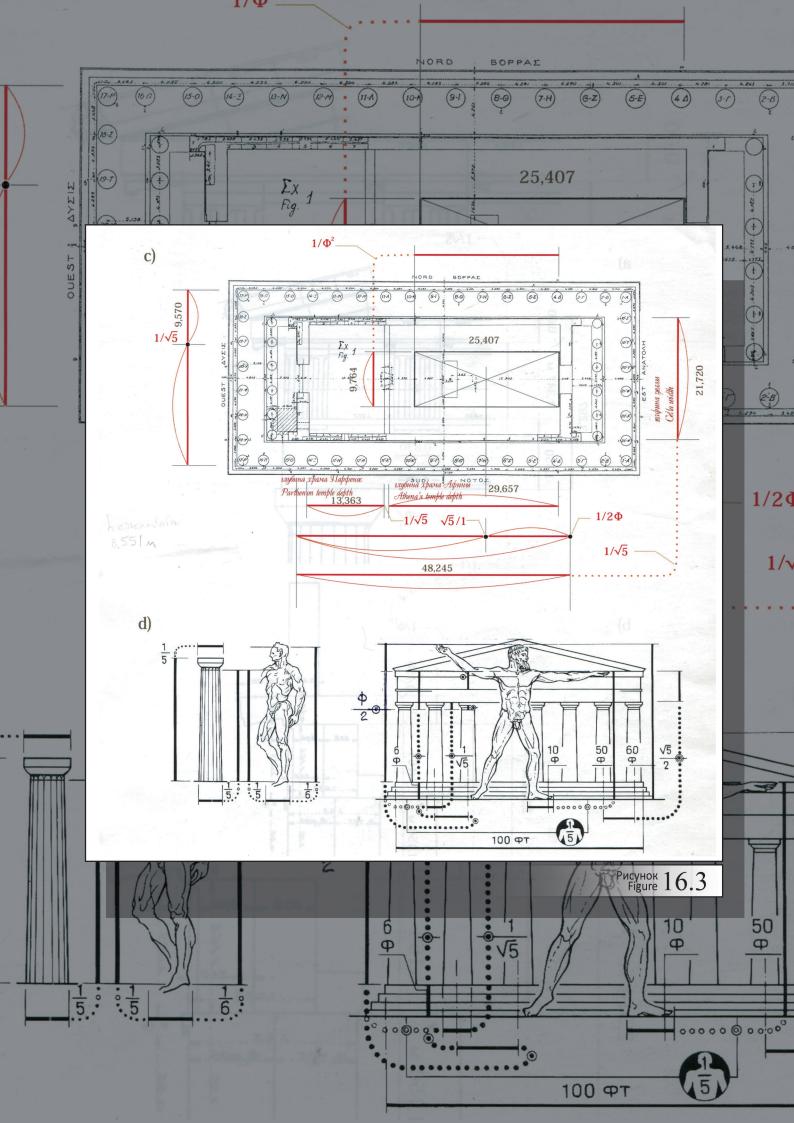
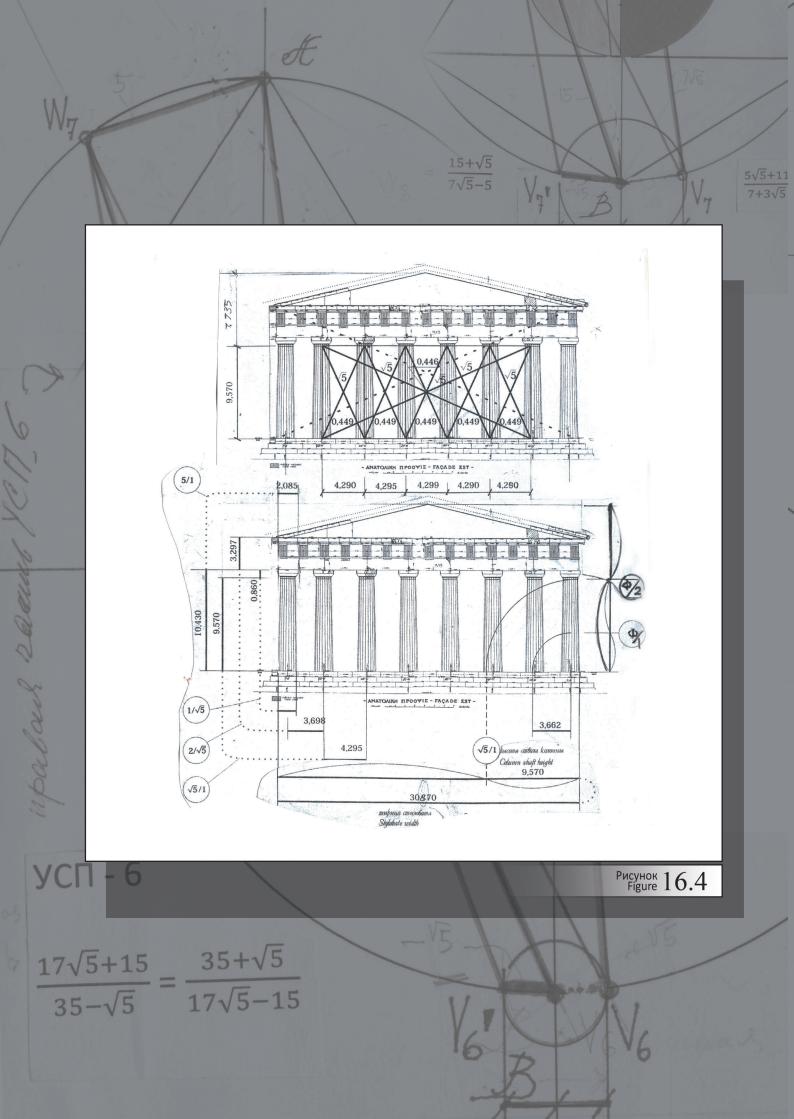


Рисунок **16.2** Figure **16.2**

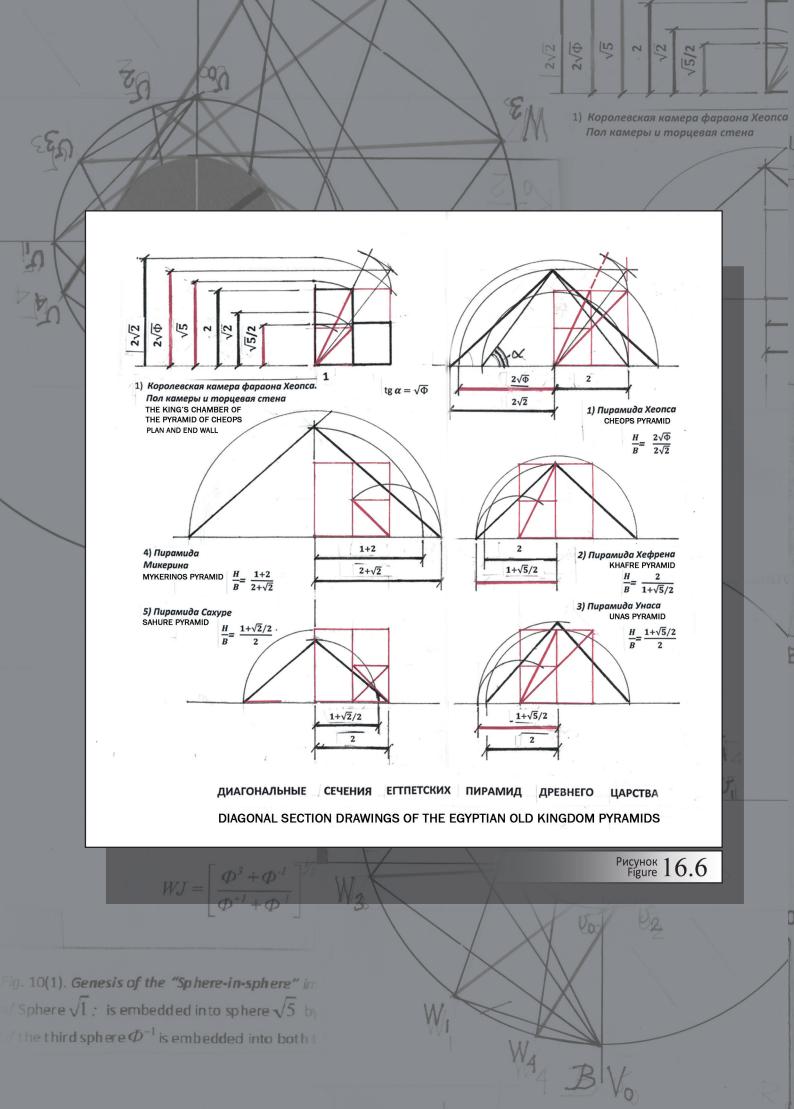
 $\sqrt{5}+1$ $2 + 0\sqrt{5}$

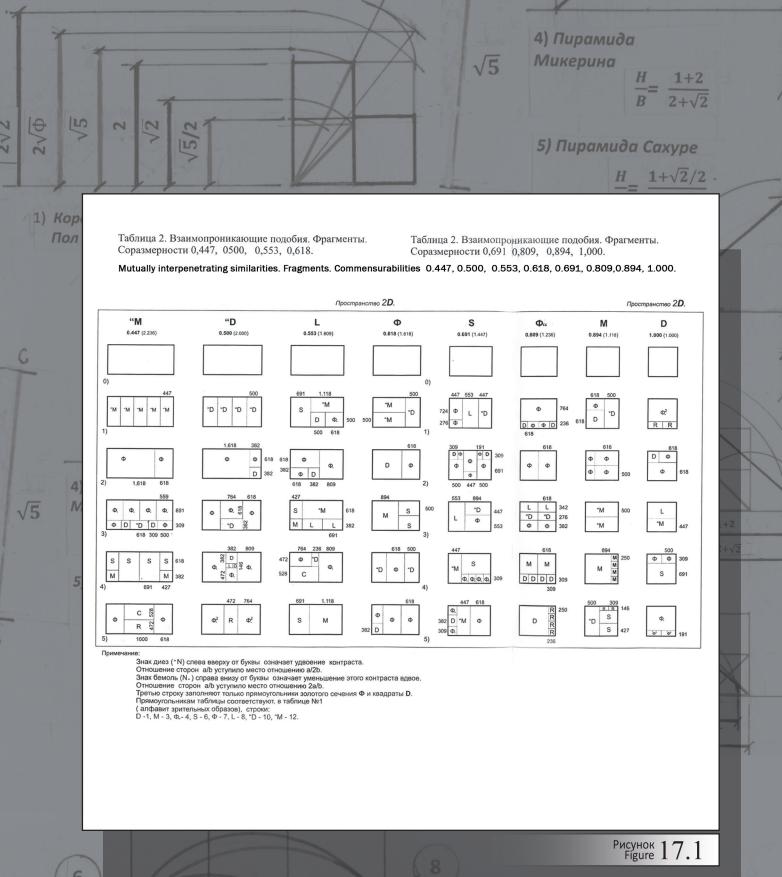




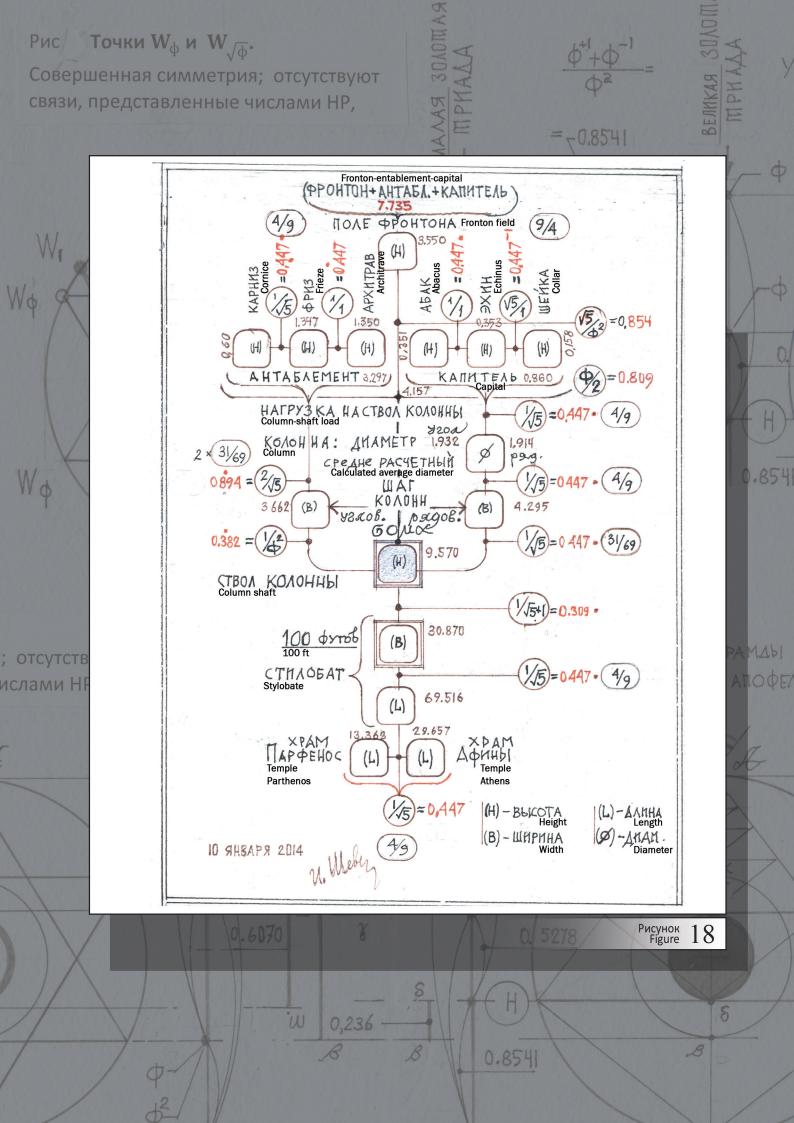
ig. 10(1). Genesis of the "Sphere-in-sphere" in

 $/\!\!/$ the third sphere ${oldsymbol \Phi}^{-1}$ is embedded into both t





0.618 0.691 0.691 0.894 0.500 0.894 0.500 0.894 0.500 0.809 0.809



БИБЛИОГРАФИЯ

BIBLIOGRAPHY

- 1. Анохин П. К. Теория отражения и современная наука о мозге. М., 1970
- 2. Вейль Г. Симметрия. М., 1968
- 3. Вернадский В.И. Философские мысли натуралиста. М., Наука. 1988
- 4. Вейзе Д.Л. Листорасположение и числа Фибоначчи. «Природа», 1996, №5
- 5. Вили К., Детье В. Биология. М., Мир, 1975
- 6. Вулдридж Д. Механизмы мозга. М., 1965 (D. E. Wooldridge; The Machinery of the Brain; М., 1965)
- 7. Гейзенберг В. Философские проблемы атомной физики. УРСС, М. 2004
- 8. Глезер В. Д. Механизмы опознания зрительных образов. М. Л., 1966
- 9. Курант Р., Роббинс Г. Что такое математика. М.-Л., ОГИЗ, 1947
- 10. Лейбниц Г.В. Сочинения, т.1. АН СССР. М., Мысль. 1982
- 11. Малахов В.С. Избранные главы истории математики. Янтарный сказ. ФГУИПП. 2002
- 12. Петухов С.В. Высшие симметрии в механике формообразования. Автореферат УДК 548.12. АН. М.,1974
- 13. Платон. Тимей. Сочинения. Т. 3. М., 1971
- 14. Федоров Е.С. Правильное деление плоскости и пространства. Л., Наука, 1979
- 15. Физика микромира. Малая энциклопедия С.Э., М. 1980
- 16. Франк-Каменецкий М. Д. Самая главная молекула. М., Наука, 1983
- 17. Шевелев И. Ш. Геометрическая гармония в архитектуре. « Архитектура СССР», 1965, №3
- 18. Шевелев И. Ш. Строительная метрология и построение храмов древнего Новгорода конца XII в. «Советская археология». 1968, №1
- 19. Шевелев И. Ш. Пропорции и композиция Успенской Елецкой церкви в Чернигове. Архитектурное наследство, М., 1972, №19
- 20. Шевелев И. Ш. Принцип пропорции. М., Стройиздат, 1986 (J. Shevelev; The Principle of Proportion; М., Stroyizdat. 1984)
- 21. Шевелев И. Ш., Марутаев М. А., Шмелев И. П. Золотое сечение. М., Стройиздат, 1990
- 22. Шевелев И. Ш. Формообразование в природе и в искусстве. Число форма искусство жизнь. Кострома, 1995
- 23. Шевелев И. Ш. Метаязык живой природы. М., 2000
- 24. Шевелев И. Ш. Числовой образ реального мира. ООО Промдизайн-М. 2005
- 25. Шевелев И. Ш. Золотое пространство. Кострома, 2006
- 26. Шевелев И. Ш. Основы гармонии. Визуальные и числовые образы реального мира.
- М., Луч, 2009
- 27. Шевелев И. Ш. Другое пространство. Кострома. ООО Авенир-дизайн, 2010 (J. Shevelev; *A Different Space*; "Avenir-Design" Publishers, Kostroma, 2010)
- 28. Шевелев И. Ш. Целые числа и симметрия пар. Кострома, ДиАр, 2011
- 29. Шевелев И. Ш. Гармония в зеркале геометрии. Кострома. ДиАр, 2013 (J. Shevelev; *The Harmony in a Mirror of Geometry*; "DiAr" Publishers, Kostroma, 2013)
- 30. Штендер Г. М. Восстановление Нередицы. Новгородский исторический сборник, 1962 (Shtender G. M.; *The Restoration of Nereditsa;* The Novgorod Historical Collection, 1962)
- 31. Balanos N. Les Monuments de l'Acropole. Relèvement et Conservation. Paris, 1936
- 32. Borchardt L. Längen und Richtungen der vier Grundkanten der großen Pyramide bei Gise, Berlin, 1926
- 33. Borchardt L. Gegen die Zahlenmystik an der großen Pyramide bei Gise. Berlin, 1922
- 34. Lauer J. Ph. Observations sur les Pyramides. Cair, 1960
- 35. Lauer J. Ph.; Les Problèmes des pyramides d'Égypte; Paris, 1948. Translated Edition: Лауэр Ж.Ф. Загадки египетских пирамид, М., 1966 (Lauer J. Ph.; Mysteries of the Egyptian Pyramids; Moscow, 1966)
- 36. Petrie F. W. Pyramids and Temples of Giseh. London, 1882
- 37. Quibell I. E. Excavations at Saqqara (1911-1912). Tomb of Hesy. La Caire, *Imprimerie de l'Institut Français d'Archéologie Orientale, 1913 New-York, 1977*
- 38. Stevens G. Ph. The Erechtheum. Cambridge, Mass. 1927
- 39. Shevelev Joseph. *The Golden Numbers and Biosymmetry*. Biology Forum, vol. 87 2/3, Perugia, Italy. 1994

Научное издание

Иосиф Шефтелевич Шевелев

Единицы естественной геометрии

Перевод на английский Курбатов С. В., оформление, макет Микрюков Алексей Сергеевич, Шевелева Мария Иосифовна, редактирование Битколова Надия Викторовна, Апатов Александр Альбертович. Рисунки автора.

Подписано в печать 28.04.2015. Формат издания 60х90/8. Печать цифровая. Тираж 500 экз. Издательство «ДиАр». Отпечатано на типографии «Стандарт», г. Кострома