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a Tensegrity?
Robert Connelly

In the late 1940s, a young artist named Ken-
neth Snelson showed some of his string-and-stick
sculptures to R. Buckminster Fuller. Out of this
interaction the term “tensegrity” was born. These
sculptures were quite surprising. The sticks were
suspended in midair and supported by thin wires
that were almost invisible. Fuller chose the word
tensegrity to describe such structures because of
their tensional integrity, and it has stuck through-
out the years. The following shows a picture of
one of the first small tensegrities that Snelson
made with just three sticks (taken from his Web
page). Since then, Snelson has made numerous
other tensegrity sculptures, many quite large, and
they are on display throughout the world.

But why do these structures hold up? Why are
they rigid? What does it mean to be rigid? How can
we model them mathematically?

The natural model is to define a tensegrity as a
finite graph G whose vertices p = (p1, . . . ,pn), the
configuration, are points in some Euclidean space
Ed with two types of edges labeled cables, corre-
sponding to the strings, and struts, corresponding
to the sticks. The whole tensegrity is denoted as
G(p). The cables are constrained not to get longer,
while the struts are constrained not to get shorter.
A tensegrity G(p) is defined to be rigid if, for any

Robert Connelly is professor of mathematics at Cornell
University. His email address is connelly@math.cornell.
edu.

Research supported in part by NSF grant No. DMS–0209595
(USA).

DOI: http://dx.doi.org/10.1090/noti933

other configuration q in Ed sufficiently close to the
configuration p and satisfying the cable and struts
constraints of G(p), q is rigidly congruent to p.
Some examples are below. Note that cables and
struts can cross with no effect. A flexible tensegrity
is one that is not rigid, and it necessarily has a
smooth motion that is not a rigid motion of the
whole tensegrity.

Rigid Flexible

In the plane

Struts are shown as solid line segments and
cables as dashed line segments.

Static Rigidity
There are two principal methods to show rigidity
of a tensegrity. Both methods involve the notion of
a stress in the structure, which, for mathematical
purposes, is just a scalar ωij =ωji associated to
every cable or strut connecting the ith vertex pi
to the jth vertex pj . We set ωji = 0 when {i, j} is
not an edge of G. A stress is proper if ωij ≥ 0 for
a cable and ωij ≤ 0 for a strut. The first method
is derived from the linearization of the distance
constraints. At each vertex pi consider a force
vector Fi , the equilibrium load, such that these
forces do not have any linear or angular momentum
on the configuration. This means, summing over
all i, that ∑

i
Fi = 0 and

∑
i

Fi ∧ pi = 0.

In dimension 2 or 3 the wedge product can be
replaced by the usual cross product. A tensegrity
G(p) is statically rigid if every equilibrium load
F = (F1, . . . ,Fn) can be resolved by a proper stress
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ω = (. . . ,ωij , . . . ) in the sense that, for each i,
ωij =ωji and

Fi +
∑
j
ωij(pj − pi) = 0.

This condition is then equivalent to there being
a solution to a system of linear equations with
linear inequality constraints on the stress ω,
namely, a linear programming feasibility problem.
In particular, if there are too few cables and struts,
there will always be an equilibrium force that
cannot be resolved by a proper stress. Suppose
a tensegrity with n vertices and m cables and
struts is statically rigid in dimension d. There
are dn coordinate variables, and d(d + 1)/2 is the
dimension of the equilibrium loads (assuming the
configuration does not lie in a lower-dimensional
subspace). Then m ≥ dn− d(d + 1)/2+ 1. (The +1
arises due to inequality constraints.) In dimension
2, m ≥ 2n− 2, and in dimension 3, m ≥ 3n− 5. It
is a basic result that, for a tensegrity, static rigidity
is sufficient but not necessary for rigidity.

Prestress Stability
For example, the Snelson tensegrity in the first
figure has n = 6 and m = 12 < 3n − 5, so it
is not statically rigid. Nevertheless, it is rigid.
Indeed, many of the tensegrities constructed by
artists are statically underbraced. Although, from
an engineering perspective, nonstatically rigid
structures are often considered too soft to be
dependable, we still want to detect and analyze
such tensegrities. Basically, we can ensure that the
tensegrity is rigid if the configuration minimizes
an underlying energy function, which depends
only on the lengths of the cables and struts, and
if the minimizing configuration is unique up to
rigid motions of the whole space. For example,
static rigidity can be regarded as achieving a local
minimum for reasonable choices of an energy
function. Although the Snelson tensegrity and
others like it have external loads that cannot be
resolved at the given configuration, the tensegrity
deforms slightly to resolve them. Indeed, even a
statically rigid structure will deform under any
nonzero load. When an energy function at the
given configuration is at a local minimum due to
the second derivative test, as in analysis, then the
tensegrity is said to be prestress stable.

A self-stress for a tensegrity is a stress that
resolves the zero load. Suppose that ω is a
proper self stress for a tensegrity G(p). Fix ω.
Define a quadratic form E(p) on the space of all
configurations p in Ed by

E(p) =
∑
i<j
ωij |pi − pj |2.

It turns out that the matrix of E is the Kronecker
product of d copies of an n-by-n matrix Ω with

identity, where n is the number of vertices of the
graph G, since the energy decouples into the value
on each coordinate separately. For i 6= j , the i, jth
entry of Ω is −ωij , while the diagonal entries are
such that the row and column sums of Ω are 0.

The stress energy E and the associated stress
matrix Ω have some interesting properties.

1) If ω is a proper self-stress for the tenseg-
rity G(p) and the vertices of p span a
d-dimensional (affine) linear subspace of
Ed , then the kernel of the associated stress
matrix Ω is at least (d + 1)-dimensional.

2) If ω is a proper self-stress for the tensegrity
G(p) in Ed , the kernel of the associated stress
matrix Ω is (d + 1)-dimensional, and G(q) is
another tensegrity for another configuration
q with the same self stress ω, then q is an
affine image of p.

3) If ω is a proper self-stress for the tensegrity
G(p) in Ed , the kernel of the associated stress
matrixΩ is (d+1)-dimensional,Ω is positive
semidefinite, and G(q) is a tensegrity for a
configuration q with cables no longer and
struts no shorter, then q is an affine image
of p.

Note that Property 3 does not quite say that the
tensegrity is rigid, just that it is rigid up to affine
motions, and they must preserve the lengths of the
edges {i, j}, where ωij 6= 0. Nevertheless, this is
close enough in many circumstances. For a tenseg-
rity G(p) with a self-stress ω, its stressed edge
directions are lines through the origin determined
by the vectors pi − pj , where ωij 6= 0. Think of
these lines as points in the projective space RPd−1

of dimension d − 1. We say that the stressed edge
directions of a tensegrity G(p) with self-stress ω
lie on a conic at infinity if, as points in RPd−1, they
lie on a conic. Then it is a pleasant exercise to show
that, if the stressed edge directions of a tensegrity
G(p) do not lie on a conic at infinity, then there is
no affine map of the configuration p that satisfies
the cable and strut constraints on the stressed
edges other than a rigid motion of the whole space
Ed , a congruence.

Putting this all together, we get the following
basic result.

Theorem 1. Suppose that G(p) is a tensegrity in
Ed with n vertices and a proper self-stress ω with
associated stress matrix Ω, and the following hold:

1) The rank of Ω is n− d − 1.
2) Ω is positive semidefinite.
3) The stressed directions of G(p) do not lie on

a conic at infinity.

If q is another configuration in any ED ⊃ Ed satis-
fying the cable and strut constraints of G(p), then
q is congruent to p.
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I call any tensegrity that satisfies the three
conditions of Theorem 1 superstable, and this sort
of stability is a strong example of a structure being
prestress stable. Quite a few of the tensegrities of
Snelson and other artists are superstable. From a
geometric point of view, the very strong conclusion
of Theorem 1 about global reconfigurations is also
interesting.

Global Rigidity
An edge of a tensegrity can also be regarded as
both a cable and a strut, in which case it is called
a bar ; and if all the edges are bars, it is called
a bar framework. In other words, bars are not
permitted to change their lengths at all. From
an engineering perspective, a tensegrity is just
a bar framework where some bars can support
only tension—these are the cables—and others can
support only compression—these are the struts.
A bar framework, or tensegrity, G(p) is called
globally rigid in Ed if any other configuration
q = (q1, . . . ,qn) in Ed that satisfies the constraints
of G(p) is congruent to p. While Theorem 1 gives
conditions for a tensegrity to be globally rigid in
all dimensions, the following result (see [3]) is for
bar frameworks in a fixed Ed . A configuration p
in Ed is generic, which means it is typical, if the
coordinates of all of the points do not satisfy any
nonzero polynomial with integer coefficients.

Theorem 2. A bar framework G(p) with p =
(p1, . . . ,pn) generic is globally rigid in Ed if and
only if G is the complete graph (all vertices con-
nected to all others) on d + 1 or fewer vertices or it
has a self-stress ω and corresponding stress matrixΩ of rank n− d − 1.

There has been a lot of activity applying the
ideas here to packing, granular materials, and
point location in computational geometry, for
example. One instance is that packings of spherical
disks in a polyhedral container can be regarded as
tensegrities with all struts connecting centers of
touching disks to each other and the boundary of
the container. Some of the results described here
can be found in [1], [2], [3].
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